Jun 22nd, 4:30 PM - 4:45 PM

Session B3: Alden Fish-Friendly Hydropower Turbine: Potential Application, Performance and Economics

Greg Allen
Alden Research Laboratory, Inc.

Steve Amaral
Alden Research Laboratory, Inc

George Hecker
Alden Research Laboratory, Inc

Doug Dixon
Electric Power Research Institute (EPRI)

Brian Murtha
VOITH

See next page for additional authors

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

Part of the [Aquaculture and Fisheries Commons](https://scholarworks.umass.edu/aquaculture), and the [Hydraulic Engineering Commons](https://scholarworks.umass.edu/hydraulic_engineering)

https://scholarworks.umass.edu/fishpassage_conference/2015/June22/31

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Presenter Information
Greg Allen, Steve Amaral, George Hecker, Doug Dixon, Brian Murtha, and Jeremy Smith

This event is available at ScholarWorks@UMass Amherst: https://scholarworks.umass.edu/fishpassage_conference/2015/June22/31
Alden Fish Friendly Turbine
Potential Application, Performance & Costs

Greg Allen, Steve Amaral and George Hecker
Doug Dixon
Brian Murtha and Jeremy Smith

Environmentally-enhanced Turbines and Turbine Passage Survival
Alden Fish Friendly Turbine

Presentation Outline

- Turbine characteristics
- Performance & fish survival
- Example Applications
- Costs
Mechanical design review indicates it is readily implementable for a range of applications

Performance exceeded expectations (~94% efficient at BEP)

Thrust, runaway speed, and pressure pulsations were within anticipated ranges

No cavitation for the operating conditions corresponding to design point
Biological Criteria

Hydraulic Design Objectives

- Minimize pressure change rates
- Minimize velocity shear rate
- Maximize absolute minimum pressure
- Minimize strike probability and strike survival
- Maximize strike survival

(EPRI 2008, 2011)
Biological Performance

Prototype Survival

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Alden Turbine</th>
<th>Kaplan MGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runner Diameter (m)</td>
<td>4 m</td>
<td>2.4 m</td>
</tr>
<tr>
<td>Number of Blades</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Rotational Speed (RPM)</td>
<td>120 rpm</td>
<td>300 rpm</td>
</tr>
<tr>
<td>Inflow Angle</td>
<td>21°</td>
<td>44°</td>
</tr>
<tr>
<td>Radial Velocity (m/s)</td>
<td>3.9 m/s</td>
<td>11.0 m/s</td>
</tr>
<tr>
<td>Strike Velocity (m/s)</td>
<td>12.7 m/s</td>
<td>17.7 m/s</td>
</tr>
<tr>
<td>Fish Survival</td>
<td>98.4%</td>
<td>83.5%</td>
</tr>
</tbody>
</table>

Image of Alden Turbine and Kaplan MGR shown.
Fish Friendly Turbine Application Ranges

Turbine Application

Alden Turbine

Minimum Gap Kaplan > 95% Survival

Alden Turbine > 99% Survival

Alden Turbine > 98% Survival or Kaplan MGR > 85%

Alden Turbine > 95% Survival or Kaplan MGR > 80%
POTENTIAL APPLICATION

Pébernat Hydroelectric Project

Head: 20 m
Flow: 35.9 cms
Diameter: 3.2 m
Speed: 101 rpm
POTENTIAL APPLICATION
Pébernat Hydroelectric Project

Head: 20 m
Flow: 35.9 cms
Diameter: 3.2 m
Speed: 101 rpm

Turbine Passage Survival (%) vs. Fish Length (mm)

98.1%
Project Info

- USACE Project
- ~30 m head
- 9,118 cms capacity
- 16 units @ 135 MW
- Nameplate – 2160 MW
Vacant turbine bay is approx. 9 m dia.

John Day Dam Application

Potential Turbine Options

<table>
<thead>
<tr>
<th>Design Parameter</th>
<th>Turbine dia. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.5</td>
</tr>
<tr>
<td>BEP Flow (cms)</td>
<td>215</td>
</tr>
<tr>
<td>L.E. Blade Thickness (mm)</td>
<td>455</td>
</tr>
<tr>
<td>Speed (RPM)</td>
<td>56.7</td>
</tr>
<tr>
<td>Power (MW)</td>
<td>60</td>
</tr>
<tr>
<td>Blade Spacing (m)</td>
<td>8.8</td>
</tr>
</tbody>
</table>
John Day Application

Alden Turbine Predicted Fish Survival - John Day Dam

~99.9% for 200 mm smolts

~96% for 700 mm kelts
Turbine Application

Modernization

VOITH

ALDEN
Solving flow problems since 1894
Turbine

Turbine Equipment Cost Data

![Graph showing the relationship between Turbine Price and Runner Diameter.](image-url)
Relative Costs

SIZING

<table>
<thead>
<tr>
<th></th>
<th>Alden Turbine</th>
<th>Conventional Francis</th>
<th>Conventional Kaplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter (mm)</td>
<td>3900</td>
<td>2510</td>
<td>2650</td>
</tr>
<tr>
<td>Power (MW)</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

COSTING

<table>
<thead>
<tr>
<th></th>
<th>Alden Turbine</th>
<th>Conventional Francis</th>
<th>Conventional Kaplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbine</td>
<td>1</td>
<td>0.5</td>
<td>0.55</td>
</tr>
<tr>
<td>Generator</td>
<td>0.8</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>Installation and Comm.</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Automation/ BoP</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Relative Costs</td>
<td>2.3</td>
<td>1.65</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Premium for Alden

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>39%</th>
<th>35%</th>
</tr>
</thead>
</table>

ALDEN

Solving flow problems since 1894
Questions?

Gregory Allen
ALDEN Research Laboratory, Inc.
30 Shrewsbury St., Holden, MA 01520-1843
Phone: (508) 829-6000 ext. 6409
gallen@aldenlab.com
www.aldenlab.com