






Figure 8.2. Comparison of the left and right-hand sides of Eq. 8.3 for different true reduced
velocities U∗.

as a mass spring damper as in Eq. 8.2, and limit identification to the parameters associated

with each state, as

ẍ = θ1ẋ+ θ2x+ θ3q (8.4)

The parameters θ1, θ2, and θ3 are estimated in simulation using non-linear least squares [78].

The model structure search is thus constrained to identification of a fluid force model as in

Eq. (8.3). Using ELGP, we attempt to identify the fluid force dynamics as

q̈ = f(q̇, q, ẍ, ẋ, x)

For the purposes of identification, q̈, q̇, ẍ and ẋ are estimated numerically, as described in

Ch. 3. This allows model forms to be evaluated numerically.
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8.4 ε-lexicase selection

Lexicase selection is a parent selection technique based on lexicographic ordering of test

(i.e. fitness) cases. Each parent selection event proceeds as follows:

1. The entire population is added to the selection pool.

2. The fitness cases are shuffled.

3. Individuals in the pool with a fitness worse than the best fitness on this case among

the pool are removed.

4. If more than one individual remains in the pool, the first case is removed and 3 is

repeated with the next case. If only one individual remains, it is the chosen parent. If no

more fitness cases are left, a parent is chosen randomly from the remaining individuals.

As evidenced above, the algorithm is quite simple to implement. In this procedure, test

cases act as filters, and a randomized path through these filters is constructed each time

a parent is selected. Each parent selection event returns a parent that is elite on at least

the first test case used to select it. In turn, the filtering capacity of a test case is directly

proportional to its difficulty since it culls the individuals from the pool that do not do the

best on it. Therefore selective pressure continually shifts to individuals that are elite on

cases that are not widely solved in the population. Because each parent is selected via a

randomized ordering of test cases and these cases perform filtering proportional to their

difficulty, individuals are pressured to perform well on unique combinations of test cases,

which promotes individuals with diverse performance, leading to increased diversity observed

during evolutionary runs [60].

Lexicase selection was originally applied to multimodal [193] and “uncompromising” [60]

problems. An uncompromising problem is one in which only exact solutions to every test

case produce a satisfactory program. For those types of problems, using each case as a way to

select only elite individuals is well-motivated, since each test case must be solved exactly. In

regression, exact solutions to test cases can only be expected for synthetic problems, whereas

real-world problems are subject to noise and measurement error. With respect to the lexicase
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selection process, continuously-valued errors are problematic, due to the fact that individuals

in the population are not likely to share elitism on any particular case unless they are identical

equations. On regression problems, the standard lexicase procedure typically uses only one

case for each parent selection, resulting in poor performance.

We hypothesize that lexicase selection performs poorly on continuous errors because the

case passing criteria is too stringent in continuous error spaces. For individual i to pass case

t, lexicase requires that et(i) = e∗t , where e∗t is the best error on that test case in the pool. To

remedy this shortcoming, we introduced ε-lexicase selection [109], which modulates the pass

condition on test cases via a parameter ε, such that only individuals outside of a predefined ε

are filtered in step 3 of lexicase selection. We found that it is best to automatically adapt the

ε threshold to take into account the values of et(i) across P , denoted et ∈ R|P |, so that it can

modulate its selectivity based on the difficulty of case t. A common estimate of difficulty in

performance on a fitness case is variance [175]; in this regard ε could be defined according to

the standard deviation of et, i.e. σ(et). Given the high sensitivity of σ to outliers, however,

we opt for a more robust estimation of variability by using the median absolute deviation

(MAD) [157] of et, defined as

MAD(et) = λ(et) = medianj
(
|etj −mediank(etk)|

)
(8.5)

We use Eq. (8.5) in the definition of two ε values, εe and εy, that control that pass condition

pt(i) as

εe : pt(i) = I (et(i) < e∗t + λ(et)) (8.6)

εy : pt(i) = I (et(i) < λ(et)) (8.7)

Here I is the indicator function that returns 1 if true and 0 if false. As shown in Eq. (8.6),

εe defines pt(i) relative to e∗t , and therefore is always passed by at least one individual in P .

Conversely, εy (Eq. (8.7)) defines pt(i) relative to the target value yt, meaning that ŷt(i) must
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be within ±εy of yt to pass case t. In this way εy provides no selection pressure if there is

not an individual in the population within adequate range of the true value for that case.

An important consideration in parent selection is the time complexity of the selection

procedure. Lexicase selection has a theoretical worst-case time complexity of O(|P |2N),

compared to a time complexity of O(|P |N) for tournament selection. Although clearly unde-

sirable, this worst-case complexity is only reached if every individual passes every test case

during selection; in practice [60], lexicase selection normally uses a small number of cases for

each selection and therefore incurs only a small amount of overhead. The wall clock times

for our variants of lexicase compared to other methods were quantified in [109] and showed

negligible differences.

8.5 Related Work

Although to an extent the ideas of multiobjective optimization apply to multiple test

cases, they are qualitatively different: objectives are the defined goals of a task, whereas test

cases are tools for estimating progress towards those objectives. Objectives and test cases

therefore commonly exist at different scales: symbolic regression often involves one or two

objectives (e.g. accuracy and model conciseness) and hundreds or thousands of test cases.

One example of using test cases explicitly as objectives occurs in Langdon’s work on data

structures [113] in which small numbers of test cases (in this case 6) are used as multiple

objectives in a Pareto selection scheme. Other multi-objective approaches such as NSGA-

II [32], SPEA2 [220] and ParetoGP [190] are used commonly with a small set of objectives

in symbolic regression. The “curse of dimensionality” prevents the use of objectives at the

scale of typical test case sizes, since most individuals become nondominated1, leading to

selection based mostly on expensive diversity measures rather than performance. Scaling

issues in many-objective optimization are reviewed in [76]. In lexicase selection, parents are

guaranteed to be nondominated with respect to the fitness cases. Pareto strength in SPEA2

1Program i1 dominates i2 if fj(i1) ≤ fj(i2) ∀j and fj(i1) < fj(i2) for at least one j (f is minimized).
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promotes individuals based on how many individuals they dominate, and similarly lexicase

selection increases the probability of selection for individuals who solve more cases and harder

cases (i.e. cases that are not solved by other individuals) and decreases for individuals who

solve fewer or easier cases.

A number of GP methods attempt to affect selection by weighting test cases based on

population performance. In non-binary Implicit Fitness Sharing (IFS) [98], the fitness pro-

portion of a case is scaled by the performance of other individuals on that case. Similarly,

historically assessed hardness scales error on each test case by the success rate of the popula-

tion [89]. Discovery of objectives by clustering (DOC) [97] clusters test cases by population

performance, and thereby reduces test cases into a set of objectives for search. Both IFS and

DOC were outperformed by lexicase selection on program synthesis and boolean problems

in previous studies [61, 118]. Other methods attempt to sample a subset of T to reduce

computation time or improve performance, such as dynamic subset selection [48], interleaved

sampling [51], and co-evolved fitness predictors [175]. Unlike these methods, lexicase selec-

tion begins each selection with the full set of training cases, and allows selection to adapt to

program performance on them.

The conversion of a model’s real-valued fitness into discrete values based on an ε threshold

has been explored in other research; for example, Novelty Search GP [130] uses a reduced

error vector to define behavioral representation of individuals in the population. This pa-

per proposes it for the first time as a solution to applying lexicase selection effectively to

regression.

As a behavioral-based search driver, lexicase selection belongs to a class of GP systems

that attempt to incorporate a program’s behavior explicitly into the search process, and as

such shares a general motivation with recently proposed methods such as Semantic GP [139]

and Behavioral GP [99], despite differing strongly in approach. Although lexicase is designed

with behavioral diversity in mind, recent studies suggest that structural diversity can also

significantly affect GP performance [20].

160



Table 8.1. Global modeling settings.

Setting Value

Population size 1000
Crossover / mutation 80/20%
Program length limits [3, 20]
ERC range [-1,1]
Generation limit 1000
Trials 30
Terminal Set {x, ERC, +, −, ∗, /, sin, cos, exp, log}
Elitism keep best

8.6 Experimental Analysis

Since the dynamics were not observed to exceed 5 Hz, the data was filtered to 10 Hz for

identification. Each set was split 50/50 into training and test sets. Identification was first

performed on each data set collected at specific flow velocities. 10 trials of age-fitness Pareto

optimization (AFP, see §3.6.1) were used to train the models. During identification, solutions

are archived based on Pareto-dominance in complexity and fitness (as in Ch. 6). The solution

archives are then consolidated into a seed population, and global identification is performed

on the cascaded training sets.

Global identification of the fluid force dynamics is performed on the cascaded data sets,

preserving the training and test partitions. To assess the effect of seeding the initial popula-

tion and using ε-lexicase selection, 30 trials of six treatments were tested, with ‘+S’ indicating

a seeded initial population: AFP, AFP+S, Lex εy, Lex εy+S, Lex εe, and Lex εe+S. The ELGP

settings are shown in Table 8.1.

8.7 Results

The local model identification is presented first, in terms of the best fit models as well

as the archives that produce the seeded solutions for global identification. Then the global

models are presented. We compare the six treatments according to the fitness of the models

they produce. Finally, the best fit model is evaluated and simulated along with the parame-

terized mass spring damper model. The modeling results are compared to measurement data

for each flow velocity.
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Table 8.2. Best fit local models..

U∗ Equation Complexity
Train

R2
Test

R2

4.4 q̈ = 18.8x− 2.08 q + 18.8 ẍ 28 1.00 0.92

4.7 q̈ = x− 7 q − ẋ (x ẋ− 0.186) 15 0.90 0.91

5.1 q̈ = x− 1.14 q + 0.138 ẋ 9 0.82 0.88

5.5 q̈ = 3.28x− q + 2.93 ẍ+ 0.155 ẋ 15 0.92 0.87

5.8 q̈ = 0.177 ẋ− 0.0351 ẍ− 0.955 q 13 0.85 0.81

6.2 q̈ = 0.0446 ẍ− 0.995 q + 0.172 ẋ 11 0.80 0.85

6.5 q̈ = 0.18 ẋ− 1.11 q − 0.18 log(ẍ) (x+ 0.493) 22 0.87 0.85

6.9 q̈ = 0.156 ẍ− q + 0.156 ẋ 7 0.85 0.82

7.3 q̈ = 0.169 ẍ− q + 0.169 ẋ− 0.169 log(ẍ ẋ) 24 0.87 0.83

7.6 q̈ = 0.693x− q + ẍ+ 0.146 ẋ 11 0.95 0.89

8.0 q̈ = 0.35 ẍ− q + 0.183 ẋ 9 0.92 0.92

8.4 q̈ = 0.53 ẍ− 1.16 q + 0.159 eẋ − 0.25 20 0.88 0.86

8.7 q̈ = 0.606 ẍ− 1.19 q + 0.206 ẋ 11 0.90 0.88

9.1 q̈ = ẍ (0.0755 q + ẍ+ 0.612)− q − 0.278 13 0.95 0.95

9.5 q̈ =
1.17 (x−0.21)
log(ẋ)−0.0893

− 1.17 q − 0.237 68 0.94 0.86

9.8 q̈ = x− 1.35 q + 3.71 ẍ+ 1.35 sin(1.34x) 24 0.92 0.91

10.2 q̈ = 0.871 ẍ− 1.1 q 7 0.89 0.93

10.5 q̈ = −2.07 q − 0.346x− 2.07 (x+ ẍ) (ẍ− 8.96) 15 0.99 0.91

10.9 q̈ = 2.08U2 (x+ ẍ+ 0.0164 ẋ)− 2.08 q − 0.00754 34 0.97 0.96

8.7.1 Local Models

The best local models for each data set are listed in Table 8.2. The correlations on the

test set range from 0.81 to 0.96 depending on the data set. Figure 8.3 shows the archives

resulting from local identification. The models marked by red squares represent the Pareto

front of the archived results of the trials. These models are inserted into the initial population

of the global identification runs.

8.7.2 Global Models

The best-of-run model R2 values on the test data are shown in Figure 8.4 and demonstrate

the improved model quality that results from 1) using ε-lexicase selection and 2) seeding the

initial populations with locally fit models. The ε-lexicase selection treatments all produce

models with better median R2 values than AFP and AFP+S; in addition, the seeding for

Lex εy and Lex εe generates a significant improvement in the median model quality. The

head start in model quality produced by seeding is also evident in the progress of best fit

models during the algorithms’ executions, as shown in Figure 8.5. The seeded runs start with
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Figure 8.3. ELGP runs on local data sets generate the models marked with x. These are
consolidated into a single archive based on Pareto dominance to seed the initial population
of ELGP trained on the global data set.
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≈ 20% lower MAE values. In addition, the lexicase treatments converge much quicker on

fitter solutions than the AFP treatments.

A consolidated Pareto archive of all of the modeling results is shown in Figure 8.6. In

this case, complexity is plotted on the y-axis, and fitness is plotted on the x-axis, to allow

the model forms to be shown. The fluid force model that achieves the best test fitness has

the following form:

q̈ = sin (θ4ẍ+ θ5x− q + θ6ẋ)− q (8.8)

with θ4 = 18.009, θ5 = 17.827, and θ6 0.341. Under algebraic evaluation this model has an

average correlation of R2 = 0.94 with q̈ on the test data. The parameters of the cylinder

displacement (Eq. (8.4)) are estimated via nonlinear least squares as θ1 = -11.9411, θ2 = -

0.1955, and θ3 = 2.0527. The cylinder displacement shows good agreement with measurement

data as expected, with an average correlation of R2 = 0.96.

To evaluate Eq. (8.8) in its prediction of q, we simulate its behavior using initial conditions

(q(0), q̇(0)) chosen from the test sets at different U∗. The results for six seconds of simulation

at each flow velocity are compared to measurements in Figure 8.7. The results indicate good

agreement with the measurements. However, we note that for simulation lengths longer than

10 seconds, the predictions begin to diverge from measured values, indicating that the model

may only be locally stable.

Eqns. (8.4) and (8.8) are simulated in a decoupled fashion, meaning that the states are

integrated only with respect to their own derivatives. Under these conditions, accurate phase

portraits of the VIV dynamics can be generated at each flow velocity, as shown in Figure 8.8.

8.8 Discussion and Conclusion

The results demonstrate that ε-lexicase selection with seeding provides a viable approach

to generalization for modeling dynamic systems with GP. In comparison to the AFP algorithm

used for ELGP, ε-lexicase selection is shown to converge more quickly and produce higher
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U−0.849
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Figure 8.7. Model of q compared to measurement data for different flow velocities.

fidelity models. We are able to create a reduced-order model of the VIV phenomenon that

captures the cylinder displacement and fluid force as they vary with U∗. The final model is

of the form

ẍ = θ1ẋ+ θ2x+ θ3q

q̈ = sin (θ4ẍ+ θ5x− q + θ6ẋ)− q

Challenges to fully capturing the VIV dynamics remain. In particular, a fully coupled sim-

ulation that remains stable for more than 10 seconds has yet to be accomplished. Although

we have shown that the models produce accurate results given appropriate measured inputs,

the fully coupled simulation will allow researchers to begin to explore more aspects of VIV

beyond the behavior modeled here. In addition, it is of great interest to apply this modeling

tool to different experimental setups such that the generalizability of the identified model

with respect to system parameters can be analyzed.
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Figure 8.8. Simulated and measured phase portaits of q and x for different flow velocities.
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CHAPTER 9

CONCLUSION

This dissertation presents three methods that are designed to improve the capacity of

system identification methods to identify succinct and accurate model structures. Model

structures that are intelligible are more adept at informing experts of their embedded knowl-

edge. The challenge of succinct nonlinear modeling pervades disciplines across the spectrum

of science and engineering; here, it has been addressed for three scenarios. The first scenario

applies to continuous dynamic processes for which experts have designed intelligible models

or controllers that fail to fully explain or control the nonlinearities of the process exhibited

in measured observations. MSAM is designed to optimize the introduction of nonlinear cou-

plings to these models that improve their performance while maintaining their intelligibility.

The second scenario applies to continuous dynamic processes for which no accurate start-

ing models are available. ELGP is designed to produce concise model structures achieved

by improving the capacity and search for such models in GP. The third scenario applies to

multiclass dynamic processes, like the behavior of bald eagles, for which no starting model

is available. M4GP is designed to produce models for this task by using GP as a feature

engine that can perform feature selection as well as feature synthesis, resulting in succinct

models represented as transformations of the original feature space. These methods are

demonstrated through application to the identification of nonlinear dynamics for control de-

sign, wind turbine modeling, bald eagle behavioral modeling, and fluid-structure interaction

modeling.

Together, MSAM, ELGP, and M4GP address several of the challenges to succinct non-

linear model structure identification. The rest of this chapter is devoted to identifying the

challenges they do not address, and to providing some insights into future research directions.
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Whereas the discussion sections in the respective chapters identify some of the method-specific

extensions, the goal of this discussion is to identify more broadly the challenges to model

structure identification for dynamic processes. The first research question discussed in §9.1 is

the trade-off between algebraic and simulation-based evaluation of candidate models, which

deserves a more thorough treatment. The second research question stems from the insight

that MSAM, ELGP and M4GP are hybrid methods. §9.2 discusses what role deterministic

and stochastic machine learning methods could play in the future of system identification.

9.1 Model Evaluation

As mentioned in Chs. 2 and 3, the common choice for estimating the model output(s) is nu-

merical integration (i.e., simulation) of state variables, i.e. the “output error” method [121].

However, given the sensitivity of simulation to different model structures and the compu-

tational cost of numerical integration, the alternative approach of algebraically estimating

candidate model outputs is preferred for symbolic regression [15, 177]. In the algebraic

approach, un-measured states, denoted x̃, are estimated from measurements via numerical

differentiation together with smoothing functions. This yields an algebraic estimate for the

prediction error, given in Eq. 3.2.

The algebraic prediction error will differ from the error yielded by simulated-based eval-

uation. To illustrate why, consider the classical Runge-Kutta method (RK4) to solving an

ordinary differential equation:

ẏ = f(t, y) , y(t0) = y0

then for step size h,

yn+1 = yn +
h

6
(k1 + 2(k2 + k3) + k4) , tn+1 = tn + h

where
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k1 = f(tn, yn)

k2 = f(tn +
h

2
, yn +

h

2
k1)

k3 = f(tn +
h

2
, yn +

h

2
k2)

k4 = f(tn + h, yn + hk3)

now consider a model ˆ̇y = f̂(t, y) with algebraic error ε = ẏ − ˆ̇y, such that ˆ̇y = ẏ − ε =

f(t, y)− ε(t). Then the error propagates through simulation as

ŷn = yn − εn

k̂1 = f̂(tn, yn − εn)

k̂2 = f̂(tn +
h

2
, yn − εn +

h

2
f̂(tn, yn − εn))

k̂3 = f̂(tn +
h

2
, yn − εn + f̂(tn +

h

2
, yn − εn +

h

2
f̂(tn, yn − εn)))

k̂4 = f̂(tn + h, yn − εn+

hf̂(tn +
h

2
, yn − εn + f̂(tn +

h

2
, yn − εn +

h

2
f̂(tn, yn − εn))))

Thus the error at a particular time step is amplified in the estimation of subsequent time

steps. The algebraic evaluation can be considered optimistic in the sense that it assumes

the state variables x to be free of error propagated from previous time steps. The argument

for this approach is that the algebraic error more accurately reflects the differences between

competing model structures since it is not masked by error propagation through simulation.

It also requires only one evaluation of each model on the target data, rather than 4, in the

case of RK4. However, problems can arise when simulating candidate models that have

been chosen via algebraic evaluation, because their robustness to error propagation has not

been quantified. An example of this is noted in Ch. 8, where identified models drifted from

measurement after many time steps.
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Future work should address the difference between algebraic and simulated-based error

more analytically to justify the use of one approach, the other, or both. An interesting topic

could be to investigate algebraic estimates of simulation-based error propagation to improve

algebraic estimates of simulation error without having to resort to expensive simulations

during identification. Identification could also proceed through stages in which certain mod-

els in the population are chosen for simulation to enhance confidence in their capacity for

generalization.

9.2 Hybrid Methods

The three methods presented in this dissertation represent hybrid approaches to model

structure identification. MSAM intertwines exhaustive search with parameter estimation;

ELGP interwines stochastic hill climbing with GP; M4GP intertwines GP with distance-

based classification. These methods are part of a growing body of research that combines

stochastic model structure identification algorithms with deterministic algorithms to achieve

a balance between structural and parametric search [201, 132, 72, 99, 2, 3]. The abundance of

disparate hybrid algorithms suggests that a generalized theory for interfacing the strengths

of GP methods (e.g. feature creation and selection, model structure optimization) with the

strengths of fast machine learning algorithms (e.g. ordinary least squares, decision trees,

näıve Bayes, etc.) has yet to be realized. Recent methods like Behavioral GP [99] treat

the subprogram outputs of GP individuals as features for data mining, and the data mining

in turn determines which sub-components are important to share. At the other end of the

spectrum, several methods treat individual model outputs as features in a single ensemble

model [85, 132, 72, 31, 3]. In other words, the balance and scale of GP in relation to other

methods has not been decided. Future work could explore the trade-offs and the scales at

which hybrid GP algorithms are most effective.
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[188] Silva, Sara, Muñoz, Luis, Trujillo, Leonardo, Ingalalli, Vijay, Castelli, Mauro, and

Vanneschi, Leonardo. Multiclass Classificatin Through Multidimensional Clustering.

In Genetic Programming Theory and Practice XIII, vol. 13. Springer, Ann Arbor, MI,

May 2015.

[189] Silverman, Bernard W. Density estimation for statistics and data analysis, vol. 26.

CRC press, 1986.

[190] Smits, Guido F., and Kotanchek, Mark. Pareto-front exploitation in symbolic regres-

sion. In Genetic Programming Theory and Practice II. Springer, 2005, pp. 283–299.

[191] Spector, Lee. Autoconstructive evolution: Push, pushGP, and pushpop. In Proceed-

ings of the Genetic and Evolutionary Computation Conference (GECCO-2001) (2001),

pp. 137–146.

193



[192] Spector, Lee. Automatic Quantum Computer Programming: a genetic programming

approach, vol. 7. Springer, 2004.

[193] Spector, Lee. Assessment of problem modality by differential performance of lexicase

selection in genetic programming: a preliminary report. In Proceedings of the four-

teenth international conference on Genetic and evolutionary computation conference

companion (2012), pp. 401–408.

[194] Spector, Lee, Clark, David M., Lindsay, Ian, Barr, Bradford, and Klein, Jon. Ge-

netic programming for finite algebras. In Proceedings of the 10th annual conference on

Genetic and evolutionary computation (2008), ACM, pp. 1291–1298.

[195] Spector, Lee, and Helmuth, Thomas. Uniform linear transformation with repair and

alternation in genetic programming. Genetic Programming Theory and Practice XI,

page In preparation. Springer (2013).

[196] Spector, Lee, and Robinson, Alan. Genetic programming and autoconstructive evolu-

tion with the push programming language. Genetic Programming and Evolvable Ma-

chines 3, 1 (2002), 7–40.

[197] Stanislawska, Karolina, Krawiec, Krzysztof, and Kundzewicz, Zbigniew W. Modeling

global temperature changes with genetic programming. Computers & Mathematics with

Applications 64, 12 (Dec. 2012), 3717–3728.

[198] Storrie-Lombardi, M. C., Lahav, O., Sodr, L., and Storrie-Lombardi, L. J. Morpho-

logical Classification of galaxies by Artificial Neural Networks. Monthly Notices of the

Royal Astronomical Society 259, 1 (Nov. 1992), 8P–12P.

[199] Strogatz, Steven H. Nonlinear dynamics and chaos: with applications to physics, biol-

ogy, chemistry, and engineering. Westview press, 2014.

[200] Tanev, I, and Yuta, K. Epigenetic programming: Genetic programming incorporating

epigenetic learning through modification of histones. Information Sciences 178, 23

(Dec. 2008), 4469–4481.

194



[201] Topchy, Alexander, and Punch, William F. Faster genetic programming based on local

gradient search of numeric leaf values. In Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO-2001) (2001), pp. 155–162.

[202] Towns, John, Cockerill, Timothy, Dahan, Maytal, Foster, Ian, Gaither, Kelly,

Grimshaw, Andrew, Hazlewood, Victor, Lathrop, Scott, Lifka, Dave, Peterson, Gre-

gory D., Roskies, Ralph, Scott, J. Ray, and Wilkens-Diehr, Nancy. XSEDE: Accelerat-

ing Scientific Discovery. Computing in Science and Engineering 16, 5 (2014), 62–74.

[203] Tsoulos, I. G., and Lagaris, I. E. Solving differential equations with genetic program-

ming. Genetic Programming and Evolvable Machines 7, 1 (Mar. 2006), 33–54.

[204] Turner, Andrew James, and Miller, Julian Francis. Neutral genetic drift: an inves-

tigation using Cartesian Genetic Programming. Genetic Programming and Evolvable

Machines (May 2015), 1–28.

[205] Turner, Bryan M. Histone acetylation and an epigenetic code. Bioessays 22, 9 (2000),

836–845.

[206] USGS. U.s. geological survey (USGS) earth resources observation systems (EROS) data

center (EDC), 2012.

[207] Van der Veen, Gijs. Identification of wind energy systems.

[208] van der Veen, Gijs, van Wingerden, Jan-Willem, and Verhaegen, Michel. Global Iden-

tification of Wind Turbines Using a Hammerstein Identification Method. IEEE Trans-

actions on Control Systems Technology 21, 4 (July 2013), 1471–1478.

[209] Van Wingerden, JW, Houtzager, I, Felici, F, and Verhaegen, M. Closed-loop identi-

fication of the time-varying dynamics of variable-speed wind turbines. International

Journal of Robust and Nonlinear Control 19, 1 (2009), 4–21.

195



[210] Vanneschi, Leonardo, Archetti, Francesco, Castelli, Mauro, and Giordani, Ilaria. Clas-

sification of Oncologic Data with Genetic Programming. Journal of Artificial Evolution

and Applications 2009 (2009), 1–13.

[211] Vladislavleva, E.J., Smits, G.F., and den Hertog, D. Order of Nonlinearity as a Com-

plexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Pro-

gramming. IEEE Transactions on Evolutionary Computation 13, 2 (2009), 333–349.

[212] Von Neumann, John, Burks, Arthur W, et al. Theory of self-reproducing automata.

IEEE Transactions on Neural Networks 5, 1 (1966), 3–14.

[213] Whitley, Darrell, Gordon, V. Scott, and Mathias, Keith. Lamarckian evolution, the

Baldwin effect and function optimization. In Parallel Problem Solving from Nature

(PPSN) III. Springer, 1994, pp. 5–15.

[214] Widrow, Bernard, and Walach, Eugene. Adaptive Inverse Control. Prentice Hall PTR,

Upper Saddle River, NJ 07458, 1996.

[215] Wigren, Torbjörn. Recursive prediction error identification and scaling of non-linear

state space models using a restricted black box parameterization. Automatica 42, 1

(Jan. 2006), 159–168.

[216] Wigren, Torbjörn. Input-output data sets for development and benchmarking in non-

linear identification. Technical Reports from the department of Information Technology

20 (2010), 2010–020.

[217] Wigren, Torbjörn, and Schoukens, Johan. Three free data sets for development

and benchmarking in nonlinear system identification. In Proc. 2013 Eur. Control

Conf.(ECC2013) (2013), pp. 17–19.

[218] Williamson, C.H.K., and Govardhan, R. VORTEX-INDUCED VIBRATIONS. Annual

Review of Fluid Mechanics 36, 1 (Jan. 2004), 413–455.

196



[219] Wright, Alan Duane. Modern control design for flexible wind turbines. National Re-

newable Energy Laboratory, 2004.

[220] Zitzler, Eckart, Laumanns, Marco, and Thiele, Lothar. SPEA2: Improving the strength

Pareto evolutionary algorithm. Eidgenssische Technische Hochschule Zrich (ETH), In-

stitut fr Technische Informatik und Kommunikationsnetze (TIK), 2001.

197


