Session E5: The Iron Gate Dams in the Danube River and Their Importance for Endangered Sturgeons

Jürg Bloesch
Alumnus Eawag-ETHZ Dübendorf CH & IAD, Danube Sturgeon Task Force

Follow this and additional works at: http://scholarworks.umass.edu/fishpassage_conference

Part of the Aquaculture and Fisheries Commons, and the Hydraulic Engineering Commons
The Iron Gate dams in the Danube River and their importance for endangered sturgeons

Jürg Bloesch Alumnus Eawag-ETHZ Dübendorf CH & IAD, Danube Sturgeon Task Force

Supported by

Sponsored by EIB
Aim & Structure of Session

- Provide state-of-the-art knowledge on sturgeon behavior with regard to fish passes for upstream and downstream migration
- Provide ideas and proposals for the needed Feasibility Study to reopen the Iron Gate dams
- E5: Introduction 2 talks – 4 expert talks
 E6: 1 talk – Round Table / Panel discussion
Status of Danube Sturgeons (2010 IUCN Red List)

- Beluga or Great sturgeon
 Huso huso (*Tl* max 9 m)
 Status: *A – Ex/CR*

- Danube or Russian sturgeon
 Acipenser gueldenstaedti (*Tl* max 4 m)
 Status: *A+P – Ex/CR*

- Fringebarbel or Ship sturgeon
 Acipenser nudoventris (*Tl* max 2 m)
 Status: *P – Ex/CR-Ex? †*

- Sterlet
 Acipenser ruthenus (*Tl* max 1.5 m)
 Status: *P – Vu/Vu-declining in MD*

- Common or Atlantic sturgeon
 Acipenser sturio (*Tl* max 6 m)
 Status: *A – 0/Ex †*

- Stellate or Starred sturgeon
 Acipenser stellatus (*Tl* max 1.9 m)
 Status: *A – Ex/CR*

Population trend IUCN 2014
The Endangered Sturgeon Problem

Not a single cause-effect relationship

<table>
<thead>
<tr>
<th>Common ecological needs/biological traits</th>
<th>Threats by human impacts/pressures</th>
</tr>
</thead>
<tbody>
<tr>
<td>long life cycle, late puberty, spawners complex age structure</td>
<td>over-fishing, by-catch, poaching, illegal caviar trade, diminished populations (poor legislation)</td>
</tr>
<tr>
<td>reproduction in fresh water, migration triggered by high flow</td>
<td>migration disrupted by dams/weirs, no reproduction (hydropower, navigation)</td>
</tr>
<tr>
<td>spawning sites, homing fidelity success unpredictable</td>
<td>habitat destruction (flood control, navigation, new infrastructure)</td>
</tr>
<tr>
<td>spawning: site morphology, flow regime and water quality</td>
<td>habitat destruction (flood control, navigation, pollution – new emerging pollutants)</td>
</tr>
</tbody>
</table>
Aim: to close the natural Sturgeon life-cycle
→ needs joint and simultaneous actions in the Upper, Middle and Lower Danube
Case example, Lower Danube: Melioration of Danube Navigation

DANUBE I: Calarasi – Braila (rkm 375–175)
Sill in Bala Branch may disrupt sturgeon migration
IN EXECUTION PHASE – Alternatives planned

DANUBE II: RO-BG stretch (rkm 845 – 375)
Planned technical constructions may impact sturgeon habitats
IN DESIGN PHASE
Recent Research: sturgeon migration – tagging

Bala Branch:
Migration route of beluga no. 2S18
From: Alin M. Bădiliță, György Deák, Carmen G. Nicolae, Ștefan Diaconescu, AACL BIOFLUX 2013.

Iron Gate II, downstream:
Spawning migration, sturgeon abundance & behavior downstream of HP-currents
Radu Suciu
State-of-the-art (swimming performance)
Fish/Sturgeons cannot overcome flow velocities >1.5-1.7 m/s

<table>
<thead>
<tr>
<th>Critical flow velocity (m/s)</th>
<th>Burst flow velocity (m/s)</th>
<th>Species</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5-0.7</td>
<td>0.8-2.5</td>
<td>Sturgeons (rapid and slow flow in fish pass)</td>
<td>Webber et al. (2007)</td>
</tr>
<tr>
<td>ca. 1.5</td>
<td><2.5</td>
<td>Sturgeons</td>
<td>Wiesner & Jungwirth (2007)</td>
</tr>
<tr>
<td>0.8-1.5</td>
<td>---</td>
<td>Sturgeons</td>
<td>Reinartz (2002)</td>
</tr>
<tr>
<td>1.5-1.7</td>
<td>---</td>
<td>All fish (finding entrance of fish passes)</td>
<td>Own experience based on literature</td>
</tr>
</tbody>
</table>

Bottom sill: Measured flow velocities: 0.1 – 1.0 m/s (INCDPM)
Bottom sill area: Modelled reference near bottom 0.7 – 0.9 m/s
Model BOKU Vienna: sill III 1.3 – 2.2 m/s; full sill (abandoned) 2.4 – 3.5 m/s

Reference: IAD-Report 2013
Hydropower: Iron Gate dams I and II

Iron Gate gorge (Reservoir)

Iron Gate dam I (1972, rkm 943)

Iron Gate dams II (1984, rkm 842) & ship locks
Hydropower: Iron Gate dams I and II

- Reopening will provide >800 rkm with potential spawning habitats
- Extremely complex situation: will need up to 8 fish pass facilities
- Believers & non-believers: science must provide a sound basis (Feasibility Study)
Structure of Session

- Jürg Bloesch – Introduction I: Overview Danube sturgeons
- Wilco de Bruijne – Introduction II: Iron Gate dams
- Dmitrii S. Pavlov et al. – Behavior of sturgeons
- Mike Parsley – Case study Columbia River
- Boyd Kynard – Sturgeon upstream passage
- Steve Amaral – Sturgeon downstream passage
- Radu Suciu et al. – Sturgeon monitoring Danube
- Panel / Round Table Discussion
Panel: IG Problems / FS Tasks

- FP design (alternatives) for sturgeons?
- FP dimensions for sturgeons?
- FP entrance: ramp, attractive current
- “Fish friendly” turbines
- FP success control & subsequent upgrade

- Behavior of sturgeons downstream and upstream of the dams? (Ethohydraulics; different species)
- Flow velocities sturgeons can overcome?
- 2D and 3D hydraulic/hydrological modelling vs. flow measurements
- Monitoring of sturgeon migration (Telemetry)