Session C7: Tricky Little Lampreys! Efficacy of an Unmodified and Modified Super-Active Baffle Fish Pass for European River Lamprey (Lampetra Fluviatilis)

Jeroen S. Tummers
School of Biological and Biomedical Sciences, Durham University

Emily Winter
School of Biological and Biomedical Sciences, Durham University, UK

Sergio Silva
Department of Zoology and Physical Anthropology, Faculty of Biology, University of Santiago de Compostela, Spain;
Hydrobiology Station “Encoro do Con”, Castroagudín s/n, Vilagarcía de Arousa, Pontevedra, Spain

Pat O'Brien
Environment Agency, Coverdale House, York, UK

Min-Ho Jang
Department of Biology Education, Kongju National University, Kongju, Chungnam, South Korea

Follow this and additional works at: http://scholarworks.umass.edu/fishpassage_conference

Part of the Aquaculture and Fisheries Commons, and the Hydraulic Engineering Commons

This Event is brought to you for free and open access by the The Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Presenter Information
Jeroen S. Tummers, Emily Winter, Sergio Silva, Pat O’Brien, Min-Ho Jang, and Martyn C. Lucas
Tricky little lampreys! Efficacy of an unmodified and modified super-active baffle fish pass for European river lamprey (Lampetra fluviatilis)

Jeroen S Tummers\(^1\)*, Emily Winter\(^1\), Sergio Silva\(^2,3\), Pat O’Brien\(^4\), Min-Ho Jang\(^5\) & Martyn C Lucas\(^1\)

\(^1\) Durham University, UK; \(^2\) University of Santiago de Compostela, Spain; \(^3\) Hydrobiology Station “Encoro do Con”, Spain; \(^4\) Environment Agency, UK; \(^5\) Kongju National University, South Korea

*\(j.s.tummers@durham.ac.uk\)
Effective fish passes?

- Several types of fish pass, technical & nature-like, work adequately for fusiform morphotypes (Bunt et al., 2012), but often perform poorly for anguilliform morphotypes, including upstream-migrating lampreys, with relatively poor swimming capacity.
- Lab’ mechanistic studies (e.g. Kemp lab studies) + full-scale field studies
- Foulds & Lucas (2013): two technical fish passes (pool & weir, Denil) - extreme inefficiency for river lamprey (5.0% and 0.0% passage efficiency).
- But….. at Geesthacht double-vertical slot pass (Elbe, Germany, 0.10 m drops 9-m long basins, 1% slope), 88% of river lamprey “used” the pass (Adam, 2012).

Larinier super-active baffled fish passes

- Chevron baffles create relatively fast and slow lanes for upstream passage
- Now UK’s preferred technical pass (by # installed) for wide range of species – untested for lampreys

- Lampreys - positively thigmotactic, serpentine - exploit crevices
- Modular “Eel tiles” with projecting ‘bosses’
- Aim: Is a (modified) single-flight super-active baffle fish pass effective for adult river lamprey?
Methods: Study site

• Buttercrambe, 20-m wide flow-gauging weir
• Part of Humber river system, sustains one of UK’s main river lamprey populations.
• 2013-2014: fish pass (15% slope) before modifications, 2014-2015: after (with wall-mounted tiles)
• Lamprey for tests trapped, tagged and released 150 m d/s Buttercrambe.
PIT telemetry

- Lamprey sedated. Length measured. 32 mm PIT tag implanted.
- HDX PIT system, 13 read-write cycles s\(^{-1}\)
- **Unmodified pass**: 1 antenna inside entrance, 1 at exit
- **Modified pass**: 4 antennae; open-channel entrance + exit; inside contiguous wall-mounted tiles (entrance + exit); tile antennae = deliberately low range ensuring within-tile detection only
- Date + time, antenna number and unique code logged as tagged fish passes

Scale-drawing of Buttercrambe Larinier pass – values are in metres
Acoustic telemetry

PIT antennae interrogate limited area (within pass only), so to assess passage at weir:

- 2013-2014: 319 lamprey PIT tagged, 31 PIT + acoustic tagged over 6 release dates (31 Oct - 06 Dec)
- 2014-2015: 197 lamprey PIT tagged over 5 release dates (28 Oct - 04 Dec)

Sample sizes

$n = 31$ tags $n = 8$ loggers
Results: Flow velocities within fish pass

- Fishway = 15% gradient, 24 rows of 0.15 m high baffles.
- Lamprey use combination of burst swimming alternated with resting behaviour (oral disc attachment to substrate)

0.4 m above bed

Velocities measured, using EM flow meter, at Q_{98} only (hundreds of points throughout fishway).

0.2 m above bed
Lamprey attempts

- Attraction efficiencies:
 2013-2014: 315/350 (90%)
 2014-2015: 169/197 (85.8%)

- Time until arrival at fish pass:
 (2013-2014): median 25 h (1 - 1386 h). 158/315 (50.2%) within 24 h.
 No sig. diff. Mann-Whitney; U=24201.0, Z= -1.650, p=0.099
Starting 19 Nov 14 flows were decreasing and relatively low.

Two tiles (1 m and 3 m upstream of the lower instrumented one) detached ca. 18 Dec ’14 and were not replaced.

<table>
<thead>
<tr>
<th>Tagging date</th>
<th>Det. at entrance (+ exit)</th>
<th>Attraction efficiency (%)</th>
<th>Passage efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 Oct 13</td>
<td>60 (0)</td>
<td>89.5</td>
<td>0</td>
</tr>
<tr>
<td>06 Nov 13</td>
<td>77 (1)</td>
<td>95</td>
<td>1.3</td>
</tr>
<tr>
<td>14 Nov 13</td>
<td>68 (0)</td>
<td>88.3</td>
<td>0</td>
</tr>
<tr>
<td>21 Nov 13</td>
<td>55 (0)</td>
<td>85.9</td>
<td>0</td>
</tr>
<tr>
<td>26 Nov 13</td>
<td>34 (0)</td>
<td>87.2</td>
<td>0</td>
</tr>
<tr>
<td>06 Dec 13</td>
<td>21 (0)</td>
<td>95.4</td>
<td>0</td>
</tr>
<tr>
<td>Total/mean</td>
<td>315 (1)</td>
<td>90.1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tagging date</th>
<th>Det. at entrance (+ exit)</th>
<th>Det. at entrance</th>
<th>At d/s tile</th>
<th>At u/s tile</th>
<th>At exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 Oct 14</td>
<td>31 (9)</td>
<td>88.6</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07 Nov 14</td>
<td>8 (2)</td>
<td>57.1</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 Nov 14</td>
<td>74 (1)</td>
<td>89.2</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 Nov 14</td>
<td>44 (0)</td>
<td>86.3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04 Dec 14</td>
<td>12 (0)</td>
<td>85.7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total/mean</td>
<td>169 (12)</td>
<td>85.8</td>
<td>7.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Migration delay

Temporal impacts on migration can reduce spawning success, survival (increased predation, local aggregation).

Minimum delay (time interval between release and last detection at entrance).

Acoustic telemetry

- 29 (93.5%) visited the weir vicinity (4 (13.8%) passed weir directly), fewer (23, 74.2%) visited the fish pass.
- No successful ascents via the fish pass.
Conclusions

• Before modifications: numerous attempts (mean/lamprey: 11.5) at a range of flow conditions by 90.1% of released lamprey, only 0.3% were successful.

• After tiles placed: attraction efficiency: 85.8%
 7.4 mean attempts/lamprey
 7.1% passage efficiency

• Even with lamprey tiles, direct passage of barrier (13.8%) is still higher than through fish pass.

• Should be > 90% efficient for effective population restoration (argued by Lucas & Baras, 2001).

• This fish pass, in original & modified design is ineffective for river lamprey.

Thank you

Thanks to Aldby Park Estate & Greg McCormick for access & assistance
Flow and temp. conditions

2013-2014
excluding release dates:
Lamprey passage attempts with:
 temp ($F_{1,111} = 2.430$, $p = 0.122$, $R^2 = 0.021$);
 flow ($F_{1,111} = 0.316$, $p = 0.575$, $R^2 = 0.003$);
 flow + temp ($F_{2,110} = 1.219$, $p = 0.300$, $R^2 = 0.022$)

2014-2015
excluding release dates:
Lamprey passage attempts with:
 temp ($F_{1,115} = 5.375$, $p = 0.022$, $R^2 = 0.045$);
 flow ($F_{1,115} = 21.242$, $p < 0.001$, $R^2 = 0.156$);
 flow + temp ($F_{2,114} = 11.719$, $p < 0.001$, $R^2 = 0.171$)
Flow and temp. conditions ('13-'14)

No. of attempts in continuous black; discharge in dashed grey; temperature in dotted black
Flow and temp. conditions ('14-'15)

No. of attempts in continuous black; discharge in dashed grey; temperature in dotted black
Flow and temp. conditions (2)

- Cut off at 16 Jan, after which very low migratory activity was recorded.

- **2013-2014**: excluding release dates: Lamprey passage attempts with:
 - temp ($F_{1,70} = 1.893, p = 0.173, R^2 = 0.026$);
 - flow ($F_{1,70} = 4.964, p = 0.029, R^2 = 0.066$);
 - flow + temp ($F_{2,69} = 3.719, p = 0.029, R^2 = 0.097$)

- **2014-2015**: excluding release dates: Lamprey passage attempts with:
 - temp ($F_{1,74} = 1.778, p = 0.187, R^2 = 0.023$);
 - flow ($F_{1,74} = 15.086, p < 0.001, R^2 = 0.169$);
 - flow + temp ($F_{2,73} = 7.538, p = 0.001, R^2 = 0.171$)