100 m and 160 m emission as resolved star–formation rate estimators in M33 (HERM33ES)

M Boquien

D Calzetti

University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/astro_faculty_pubs

Part of the Astrophysics and Astronomy Commons

Recommended Citation

Boquien, M and Calzetti, D, "100 m and 160 m emission as resolved star–formation rate estimators in M33 (HERM33ES" (2010). Astronomy and Astrophysics. 975.

Retrieved from https://scholarworks.umass.edu/astro_faculty_pubs/975
100 μm and 160 μm emission as resolved star–formation rate estimators in M33 (HERM33ES)*

M. Boquien1, D. Calzetti1, C. Kramer2, E. M. Xilouris3, F. Bertoldi4, J. Braine5, C. Buchbender5, F. Combes6, F. Israel7, B. Koribalski8, S. Lord8, G. Quintana-Lacaci2, M. Relaño10, M. Röllig11, G. Stacey12, F. S. Tabatabaei13, R. P. J. Tilanus14, F. van der Tak15, P. van der Werf7, and S. Verley16

(Affiliations can be found after the references)

1. Introduction

Star formation is one of the main drivers of galaxy formation and evolution and as such the accuracy of the SFR (star–formation rate) determination is of great importance for deriving the cosmic history of galaxies. Along with the UV and the Hα, the total infrared luminosity is widely used to estimate the SFR. To properly quantify the infrared luminosity a good sampling of the infrared SED (spectral energy distribution) is needed (Dale & Helou 2002; Draine & Li 2007). Over the past few years, many authors have shown that the TIR (total infrared) luminosity, and by extension the SFR (Kennicutt 1998), can also be evaluated from monochromatic emission measures (Takeuchi et al. 2005; Calzetti et al. 2007; Rieke et al. 2009; Calzetti et al. 2010; Boquien et al. 2010, Y. Li et al. 2010, in prep.). However, most relations between the far–infrared luminosity and the SFR are established for entire galaxies. At shorter wavelengths, some relations have been derived from individual star–forming regions (Calzetti et al. 2005; Pérez-González et al. 2006; Calzetti et al. 2007; Relaño et al. 2007). As new deep surveys will become available at wavelengths where most of the energy is emitted, it is prudent to try to understand the relation between the integral emission of a galaxy and that of the individual star forming regions. The physical conditions, such as temperature, abundance and emissivity, of the infrared–emitting dust can vary widely in a galaxy, and so does the significant contribution from evolved stars (Lonsdale Persson & Helou 1987; Sauvage & Thuan 1992; Buat & Xu 1996). Therefore, any scaling relation established from the emission of entire galaxies may not be appropriate when applied to resolved star–forming regions in these same galaxies.

The limited resolution of far–infrared instruments onboard IRAS (Infrared Astronomical Observatory), ISO (Infrared Space Observatory) or even Spitzer beyond 60 μm made the study of individual star–forming regions within galaxies difficult. However, the recently launched Herschel Space Observatory (Pilbratt et al. 2010) with its unprecedented resolution provides the first opportunity to study the spatially resolved far–infrared dust emission in exquisite detail. Such a fine resolution is of the utmost importance to study the emission of star–forming regions located in nearby galaxies in order to provide insights into the fundamental properties of the dust and to quantify the SFR.

With an inclination of 56° (Regan & Vogel 1994) and a distance of only 840 kpc (Freedman et al. 1991), M33 is one of the closest spiral galaxies. It has been imaged by Herschel in the context of the HERM33ES Open Time Key Project (Kramer et al. 2010), providing one of the finest views Herschel will ever provide of a spiral galaxy from 100 μm to 500 μm (Kramer et al. 2010; Braine et al. 2010; Verley et al. 2010b).

2. Observations and data reduction

2.1. PACS

The observations provided by PACS (Poglitsch et al. 2010) at 100 μm and 160 μm are presented by Kramer et al. (2010) along

* Herschel is an ESA space observatory with science instruments provided by European–led Principal Investigator consortia and with important participation from NASA.
with a detailed description of the data processing pipeline. The observations were carried out on 2010-01-07 in parallel mode with a 20″/s scanning speed for a total of 6.3 hours, through a single scan and a perpendicular cross scan. The frames were first processed to level 1 with HIPE (Ott 2010), the drifts were corrected and were deglitched with the second–order deglitcher with a 6–σ threshold. The maps were produced with photoproject mapmaker using a two–step masking technique to preserve the diffuse emission from being affected by the high–pass filter. The total flux of the galaxy is consistent with the measures provided by IRAS and Spitzer at 100 μm and 160 μm (Kramer et al. 2010). We present the two maps in Figure 1. The pixel size is 3.2″ at 100 μm and 6.4″ at 160 μm for a spatial resolution of 6.7″×6.9″ at 100 μm and 10.7″×12.1″ at 160 μm. The absolute calibration uncertainty is 5% at 100 μm and 10% at 160 μm. The total fluxes of M33 agree to within a few percent with those from ISO (Hippkelein et al. 2003) and MIPS. In addition, for all radial averages the PACS 160 flux is within 20% of the MIPS 160 one.

2.2. Hα and Spitzer MIPS 24 μm

We used the Hα image presented by Hoopes & Walterbos (2000) that is commonly used in the literature (Tabatabaei et al. 2007; Gardan et al. 2007; Verley et al. 2007, 2009, 2010a). The NII contamination was corrected assuming [NII]/Hα=0.05 in the filter bandpass. We also corrected the fluxes for Galactic foreground extinction using the Cardelli et al. (1989) law, assuming E(B−V)=0.042 from the NASA Extragalactic Database.

We used the 24 μm MIPS data presented by Tabatabaei et al. (2007). No further processing was performed on this image.

2.3. Flux measurements

All targeted HII regions flux densities were measured in polygonal apertures using IRAF’s polyphot procedure. Each polygon was constructed manually from the PACS 160 μm image and tailored to avoid subtraction artefacts in Hα and background sources in MIPS 24 μm images. Each source was selected to be as compact as possible, taking into account the blending at 160 μm to avoid the mix of several star–forming regions of different ages and properties. The background was calculated measuring the mode of the pixels distribution in an annulus around the aperture. Annulus pixels falling into the aperture of a source were automatically discarded. The inner radius of the annulus ranges from 20″ to 70″ by steps of 10″, which were defined to be larger than the equivalent radius of the aperture: \(r = \sqrt{S}/\pi \), where \(S \) is the area of the aperture. A scale of 50 pc corresponds to an angular size of 11″. The width of the annulus was set to 12″. Aperture correction was performed for 24 μm data 1 and for the PACS bands 4. As the apertures are not circular, we applied the method presented in Boquien et al. (2007) using the equivalent radius of the aperture.

As a proxy for the SFR we applied the scaling presented by Calzetti et al. (2001) IMF (initial mass function) with a constant SFR over 100 Myr.

\[SFR = \frac{0.03 L(Hα)}{5.35 \times 10^{-35}} \text{M}_\odot \text{yr}^{-1}, \]

where \(L(Hα) \) is the Hα luminosity in W and \(L(24) \) is defined as \(nL_\nu \) at 24 μm in W, assuming a Kroupa (2001) IMF (initial mass function) with a constant SFR over 100 Myr.

For an easier use of the SFR estimator we will provide in this article, we subsequently worked in \(\Sigma \) (luminosity surface density) because it is distance–independent, in order to facilitate a comparison with other galaxies. To do so, we divided the luminosity by the area of the polygon measured in kpc 2.

3. Results

3.1. General characteristics of HII regions

We selected a total of 179 HII regions from the 160 μm map. The physical equivalent radius of the extraction apertures ranges from 37 pc to 256 pc, with a median of 99 pc. \(\Sigma_{100} \) ranges from \(1.0 \times 10^{33} \text{ W kpc}^{-2} \) to \(1.0 \times 10^{35} \text{ W kpc}^{-2} \) and \(\Sigma_{160} \) from \(1.5 \times 10^{33} \text{ W kpc}^{-2} \) to \(5.2 \times 10^{34} \text{ W kpc}^{-2} \). The typical 1–σ uncertainties are 0.09, 0.06, 0.02, and 0.03 dex in Hα, 24 μm, 100 μm, and 160 μm respectively. \(\Sigma_{SFR} \) (SFR density) ranges from \(1.2 \times 10^{-3} \text{ M}_\odot \text{kpc}^{-2} \text{yr}^{-1} \) to \(1.5 \times 10^{-1} \text{ M}_\odot \text{kpc}^{-2} \text{yr}^{-1} \).

The fraction of the total flux enclosed in the 179 apertures compared to the total flux of M33 is 0.40, 0.43, 0.35, and 0.24 in Hα, 24 μm, 100 μm, and 160 μm assuming galaxy–integrated fluxes \(F(Hα) = 4.03 \times 10^{-13} \text{ W m}^{-2} \), \(F(24) = 49.4 \text{ Jy} \) (Verley et al. 2007), \(F(100) = 1288 \text{ Jy} \), and \(F(160) = 1944 \text{ Jy} \) (Kramer et al. 2010). That so little of the total 160 μm flux associated with the selected HII regions suggests that the large–scale diffuse emission seen at this wavelength may not be directly related to the ongoing massive star–formation, which is consistent with the result of Hinz et al. (2004) for M33, but may be heated by non–ionising B and A stars as observed for instance by Israel et al. (1996) in another galaxy with a similar metallicity, NGC 6822.

3.2. 100 μm and 160 μm as SFR estimators

Being closer to the peak IR emission, the 100 μm promises to yield an accurate SFR indicator for HII regions and star–formation–dominated galaxies. In this respect, the high angular resolution Herschel data will be essential to establish the range of applicability and any limitation of this indicator.

First of all \(\Sigma_{100} \) and \(\Sigma_{160} \) are very well correlated with a Spearman correlation coefficient \(p_{100–160} = 0.92 \). This is expected because both bands probe the grey body emission of big grains. It appears that \(\Sigma_{100} \) and \(\Sigma_{160} \) are also well correlated with \(\Sigma_{SFR} \), with a Spearman correlation coefficient \(p_{SFR–100} = 0.85 \) and \(p_{SFR–160} = 0.77 \).

In Figure 2 we present the fits of \(\Sigma_{100} \) and \(\Sigma_{160} \) versus the estimated \(\Sigma_{SFR} \). To estimate the relations between the SFR and the PACS emission we fitted a linear relation in log–log using an ordinary least–square technique taking into account uncertainties on both axes.

The best fits for M33 HII regions respectively correspond to

\[\log \Sigma_{SFR} = (0.9938 \pm 0.0244) \log \Sigma_{100} - (35.8520 \pm 0.8304) \]

\[\log \Sigma_{SFR} = (1.1333 \pm 0.0293) \log \Sigma_{160} - (40.4325 \pm 0.9931) \]

The relations have a dispersion around the best fit of 0.22 dex and 0.25 dex. We notice that the 100 μm relation is nearly linear, whereas the 160 μm relation is slightly superlinear. This is similar to what Calzetti et al. (2010) found (Eq. 23), even though individual star–forming regions probe a much smaller range of \(\Sigma_{SFR} \).
Fig. 1. PACS maps of M33 at 100 µm (left) and 160 µm (right). To probe the full dynamic range of the image a logarithmic scale is used. Individual clumps are well resolved with minimal blending. Some diffuse emission is visible, particularly in the arms and the central region of the galaxy. The visible perpendicular stripes in each scanning direction are sampling artefacts. The red polygons represent the selected apertures. North is up, East is left.

Fig. 2. Σ_{SFR} as a function of Σ_{100} (left) and Σ_{160} (right). A black plus corresponds to individual HII regions in M33. The error bars correspond to the typical uncertainty for the lower and higher 50% percentile. For comparison additional integrated galaxies are also plotted: SINGS (Spitzer Infrared Nearby Galaxies Survey, Dale et al. 2007, red crosses), LVL (Local Volume Legacy Survey, Dale et al. 2009, green squares), starburst galaxies from Engelbracht et al. (2008) (blue triangles) and LIRGs from (Luminous Infrared Galaxies Calzetti et al. 2010, cyan circles). These galaxies belong to the high–metallicity bin of Calzetti et al. (2010), which encloses the metallicity of M33 (Magrini et al. 2010). The best fit of selected star–forming regions in M33, taking into account the uncertainties on both axes, is plotted with a solid black line. The dashed line represents the model described in Sect. 4.1 assuming an extinction $E(B-V)=0.25$, set to reproduce the observed $\Sigma_{H\alpha}/\Sigma_{24}$. Finally the dotted line represents the best fit determined by Calzetti et al. (2010) for entire galaxies.

4. Discussion

4.1. Modeling

To model the individual HII regions we used the Calzetti et al. (2007) model as a baseline. The ionising flux is determined using
4.2. Comparison with entire galaxies

Calzetti et al. (2010) showed that for entire galaxies the emission at 160 µm correlates linearly with Σ_{SFR}. To compare this with the emission of entire galaxies at 100 µm and 160 µm, we plotted in Figure 2 several samples of relatively metal-rich galaxies from SINGS (Spitzer Infrared Nearby Galaxies Survey), LVL (Local Volume Legacy Survey), starburst galaxies from Engelbracht et al. (2008) and some LIRGS (Luminous Infrared Galaxies). Surprisingly, individual star–forming regions and entire galaxies show a similar behaviour. Unfortunately the large scatter in both samples makes any assessment of the contamination by the large diffuse emission in entire galaxies very difficult. However, when they are compared with the relation derived for individual regions, most show a stronger 100 µm and 160 µm emission for a given Σ_{SFR}, especially in the $33 \leq \log \Sigma_{S} \leq 34.5$ range where x is 100 or 160. Further comparisons to estimate the contamination by a diffuse far-infrared component will require detailed modelling of individual star–forming regions and entire galaxies.

4.3. Dust temperature

The slight non-linearity in the $\Sigma_{160} - \Sigma_{SFR}$ relation hints at a higher dust temperature with increasing Σ_{SFR}, which would have different effects on the two PACS bands because the peak of the emission passes through the filter bandpasses as the temperature increases. Indeed, as dust gets warmer, an increasing fraction will be emitted at shorter wavelengths. In Figure 3 we plot $\Sigma_{160}/\Sigma_{100}$, a proxy for the dust temperature of the warm component, versus Σ_{SFR}.

We see a clear trend with higher Σ_{SFR} ($\rho = -0.55$) leading to a higher dust temperature. The spanned range is compatible with the emissivity values published by Draine & Li (2007) for $0.5 \leq U \leq 100$, U being the interstellar radiation field normalised to that of the solar neighbourhood. This means that an increasing fraction of the total dust emission is detected in the 100 µm band compared to the 160 µm band. Interestingly we also notice that the trend in entire galaxies is very similar to the trend in individual HII regions in M33 despite the fact that individual regions should have little contamination from the diffuse large scale emission. One possible interpretation is that in both entire galaxies and individual HII regions, star–formation dominates at higher Σ_{SFR} and creates the trend whereas, at lower Σ_{SFR} the trend is influenced by the uncertainties and variations of conditions in the radiation–transfer and dust–heating processes such as the opacity of the star–formation region, the clumpiness of the media, the relative locations of stars and dust clouds, etc.

5. Conclusions

We used the high–resolution Herschel 100 µm and 160 µm observations of a nearby star–forming galaxy, M33. We combined

Figure 3. $\Sigma_{160}/\Sigma_{100}$ vs. Σ_{SFR} (black plusses), for the 179 HII regions selected in M33. The error bars correspond to the typical uncertainty for the lower and higher 50% percentile. For comparison additional entire galaxies are plotted using the same colour scheme as in Fig. 2.

Acknowledgements. We thank Herschel scientists for their valuable help with the PACS data reduction, in particular Babar Ali, Bruno Altaieri, Bidushi Bhattacharya, Nicolas Billot and Marc Sauvage. We also thank the NHSC for providing the computing architecture used in the reduction of the data. We also thank our referee, C. K. Xu, for useful comments that helped improve the quality of this article.

References

Braine et al., 2010, this volume