PACS and SPIRE photometer maps of M 33: First results of the HERschel M 33 Extended Survey (HERM33ES)

C Kramer
C Buchbender
E Xilouris
M Boquien
J Braine

See next page for additional authors

Follow this and additional works at: https://scholarworks.umass.edu/astro_faculty_pubs

Part of the Astrophysics and Astronomy Commons

Recommended Citation
Kramer, C; Buchbender, C; Xilouris, E; Boquien, M; Braine, J; and Calzetti, D, "PACS and SPIRE photometer maps of M 33: First results of the HERschel M 33 Extended Survey (HERM33ES)" (2010). Astronomy Department Faculty Publication Series. 960. 10.1051/0004-6361/201014613

This Article is brought to you for free and open access by the Astronomy at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Astronomy Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Authors
C Kramer, C Buchbender, E Xilouris, M Boquien, J Braine, and D Calzetti
LETTER TO THE EDITOR

PACS and SPIRE photometer maps of M33: First results of the
Herschel M33 extended survey (HERM33ES)*

(Affiliations can be found after the references)

For the Herschel Special Issue from the HERM33ES Key Programme consortium

1. Introduction

In the local universe, most of the observable matter is contained in stellar objects that shape the morphology and dynamics of their “parent” galaxy. In view of the dominance of stellar mass, a better understanding of star formation and its consequences is mandatory. There exists a large number of high spatial resolution studies related to individual star forming regions of the Milky Way, as well as of low linear resolution studies of external galaxies. For a comprehensive view onto the physical and chemical processes driving star formation and galactic evolution it is, however, essential to combine local conditions affecting individual star formation with properties only becoming apparent on global scales.

At a distance of 840 kpc (Freedman et al. 1991), M33 is the only nearby, gas rich disk galaxy that allows a coherent survey at high spatial resolution. It does not suffer from any distance ambiguity, as studies of the Milky Way do, and it is not as inclined as the Andromeda galaxy. M33 is a regular, relatively unperturbed disk galaxy, as opposed to the nearer Magellanic Clouds, which are highly disturbed irregular dwarf galaxies.

M33 is among the best studied galaxies; it has been observed extensively at radio, millimeter, far-infrared (FIR), optical, and X-ray wavelengths, ensuring a readily accessible multi-wavelength database. These data trace the various phases of the interstellar medium (ISM), the hot and diffuse, the warm and atomic, as well as the cold, dense, star forming phases, in addition to the stellar component. However, submillimeter and far-infrared data at high angular and spectral resolutions have been missing so far.

In the framework of the open time key project “Herschel M33 extended survey (HERM33ES)”, we use all three instruments onboard the ESA Herschel Space Observatory (Pilbratt et al. 2010) to study the dusty and gaseous ISM in M33. One focus of HERM33ES is on maps of the FIR continuum observed with PACS (Poglitsch et al. 2010) and SPIRE (Griffin et al. 2010), covering the entire galaxy. A second focus lies on observing diagnostic FIR and submillimeter cooling lines [C ii], [O i], [N ii], and H2O, toward a 2′ × 40′ strip along the major axis with PACS and HIFI (de Graauw et al. 2010).

In this first HERM33ES paper, we use continuum maps covering the full extent of M33, at 100, 160, 250, 350, and 500 μm. These data are an improvement over previous data sets of M33,
98% of the emission of the ISM (dust + star-forming complexes (such as the ones labeled). ∼ (Hauser & Dwek 2001), which in turn accounts for more than a factor of 2 larger than the total IR continuum emission and angular resolution. The shorter wavelengths mostly trace the skirts of the galaxy. The longer wavelength maps revealing the presence of the cold dust in the outskirts of the galaxy. The shorter wavelengths mostly trace the branched spiral structure as well as distinct warm HII regions and star-forming complexes (such as the ones labeled).

Fig. 1. A composite 500μm (red) and 160μm (blue) map of M33. The most extended emission is traced by the longest wavelength map revealing the presence of the cold dust in the outskirts of the galaxy. The shorter wavelengths mostly trace the branched spiral structure as well as distinct warm HII regions and star-forming complexes (such as the ones labeled).

The total bolometric luminosity of normal galaxies is only about a factor of 2 larger than the total IR continuum emission (Hauser & Dwek 2001), which in turn accounts for more than ~ 98% of the emission of the ISM (dust+gas) (e.g. Malhotra et al. 2001; Dale et al. 2001). Massive star formation heats the dust mainly via its far-ultraviolet (FUV) photons and the absorbed energy is then reradiated in the IR. FIR continuum fluxes are therefore often used as a measure of the interstellar radiation field (ISRF) (e.g. Kramer et al. 2008) and the star formation rate (SFR) (e.g. Schuster et al. 2007). However, a number of authors have suggested that half of the FIR emission or more is due to dust heated by a diffuse ISRF, and not directly linked to massive star formation (Israel et al. 1996; Verley et al. 2009).

Another disputed topic is the evidence for a massive, cold dust component in galaxies. The SCUBA Local Universe Galaxy Survey (Dunne & Eales 2001) identified a cold dust component at an average temperature of 21 K. A number of studies of the millimeter continuum emission of galaxies found indications for even lower temperatures (Misiriotis et al. 2006; Weiß et al. 2008; Liu et al. 2010). In order to estimate the amount of dust at temperatures below about 20 K, and to improve our understanding of the physical conditions of the big grains, well calibrated observations longward of ~ 150 μm wavelength are needed.

2. Observations

M33 was mapped with PACS & SPIRE in parallel mode in two orthogonal directions, in 6.3 hours on January 7, 2010. Observations were executed with slow scan speed of 20″/sec, covering a region of about 70″ × 70″. Data were taken simultaneously with the PACS green and red channel, centered on 100 and 160 μm. SPIRE observations were taken simultaneously at 250, 350, and 500 μm. The PACS and the SPIRE data sets were both reduced using the Herschel Interactive Processing Environment (HIPE) 2.0, with in-house reduction scripts based on the two standard reduction pipelines.

2.1. PACS data

The maps are produced with “photproject”, the default map maker of the PACS data processing pipeline, and a two-step masking technique. First we generate a “naive” map, i.e. not properly taking into account partial pixel overlaps and geometric deformation of the bolometer matrix, and build a mask considering that all pixels above a given threshold do not belong to the sky. Then we use this mask to run the high-pass filter (HPF) taking into account this map. The mask helps to preserve the diffuse component to some extent. With new HIPE tools becoming available, we will try improving data processing to fully recover the diffuse emission in the PACS maps (cf. Fig1). The final map is built using the filtered, deglitched frames. They have a pixel size of 3.2″ at 100 μm and 6.4″ at 160 μm. The spatial resolutions of the PACS data are 6.7″ × 6.9″ at 100 μm and 10.7″ × 12.1″ at 160 μm. The pipeline processed data were divided by 1.29 in the red band and 1.09 in the green one, as this correction is not yet implemented in HIPE 2.0. The rms noise levels of the PACS maps are 2.6 mJy pix−2 at 100 μm and 6.9 mJy pix−2 at 160 μm. The background of the PACS maps of M33 shows perpendicular stripes in each scanning direction due to 1/f noise.

2.2. SPIRE data

A baseline fitting algorithm (Bendo et al. 2010) was applied to every scan of the maps. Next, a “naive” mapping projection was applied to the data and maps with pixel size of 6″, 10″, and 14″ were created for the 250, 350, and 500 μm data, respectively. Calibration correction factors of 1.02, 1.05, and 0.94 were applied to the 250, 350, and 500 μm maps, as this is not yet implemented in HIPE 2.0. The spatial resolutions are 18.7″ × 17.5″, 26.3″×23.4″, and 38.1″×35.1″ at 250, 350, and 500 μm, respectively. The calibration accuracy is 15%. The rms noise levels of the SPIRE maps of M33 are 14.1, 9.2, and 8 mJy/beam, at 250, 350, 500 μm.

3. Results

3.1. Maps

Figure1 shows a composite image of the 160 μm, 250 μm, and 500 μm PACS and SPIRE maps. All data sets show the flocculent and knotted spiral arm structure, extending slightly beyond 4 kpc radial distance. The PACS 160 μm map provides the most detailed view, thanks to its unprecedented linear resolution of 50 pc, allowing to resolve individual giant molecular clouds (GMCs) over the entire disk of M33. A large number of distinct sources delineates the spiral arms. The properties of these sources are studied by Verley et al. (2010) and Boquien et al. (2010). The SPIRE data show a faint, diffuse disk, extending out to ~ 7 kpc. Outside of 8 kpc, both maps show some weak emission.

Galactic cirrus is evident only in the outermost part of the galaxy beyond 6 kpc radial distance, showing an average contamination of the order of 2% which can go up to 8% at the very faint levels at 500 μm. This is still below the 15% calibration error, which is the dominant part of the uncertainty. We did not correct the M33 data for Galactic Cirrus emission.

1 PACS photometer - Prime and Parallel scan mode release note. V1.1.2, 23 February 2010
2 SPIRE Beam Model Release Note V0.1, SPIRE Scan-Map AOT and Data Products, Issue 2, 21-Oct-2009
The $S(250\mu m)/S(500\mu m)$ ratio of flux densities (Fig. 2) drops from about 6 in the inner spiral arms, to ~ 4 at ~ 4 kpc radius, continuing to less than ~ 3 at more than 6 kpc radial distance. This drop is also seen in the radially averaged spectral energy distributions (Fig. 3 Table 1). In addition, the inner spiral arms and a couple of prominent H\alpha regions (cf. Fig. 1), out to about 5 kpc radius, show an enhanced ratio of ~ 6 relative to the inter-arm ISM, exhibiting a ratio of typically ~ 4. This shows that dust is mainly heated by the young massive stars rather than the general interstellar radiation field in M33. This is in agreement with a multi-scale study of MIPS data (Tabatabaei et al. 2007), where the 160\mu m emission was found to be well correlated with H\alpha emission.

3.2. Spectral energy distributions (SEDs)

Figure 3 shows the total flux densities of M33 and radially averaged SEDs. The SEDs at different annuli were created by smoothing all data to a common resolution of 40\arcsec, and averaging the observed flux densities in radial zones of 2 kpc width: $r_i \leq R < r_i + 2$ kpc with $r_i = 0, 2, 4, 6$ kpc (cf. Fig. 2). The Herschel data agree in general well with the data from the literature. The MIPS data at 160\mu m agree within 20\% with the corresponding PACS data, for all radial zones. The 100\mu m PACS flux density, measured in the outermost annulus, is far below the expected value, indicating that extended, diffuse emission is at present lost by the data processing. We do not use these data for the fits.

Figure 3a-d shows the drop of emission by almost two orders of magnitude between the center and the outskirts at 8 kpc radial distance. One striking feature of the radially averaged SEDs is the change of the 160/250 PACS/SPIRE flux density ratio (color), which drops systematically with radial distance, from 1.7 in the inner zone, to 0.5 in the outer zone. At the same time, the slope of the SPIRE data turns shallower with distance, as already seen in Fig. 2.

We fit simple isothermal and two-component grey body models to the data. Each component is described by $S_\nu = B(\nu, T)\tau_\nu = B(\nu, T)\kappa_\nu M_d D^2$, assuming optically thin emission, with the flux S_ν, the Planck function B_ν, the opacity τ_ν, the dust mass M_d, the distance D, and the dust absorption coefficient $\kappa_\nu = 0.4(\nu/(250\text{GHz}))^\beta$ cm2 g$^{-1}$ (Kruegel & Siebenmorgen 1999, Kruegel 2003). β is the dust emissivity index. The fit minimizes the function $\chi^2 = \sum(S_{\nu,\text{obs}} - S_\nu)/\Delta S_{\nu,\text{obs}}^2$ using the Levenberg-Marquardt algorithm (Bevington & Robinson 1992), with the assumed calibration error $\Delta S_{\nu,\text{obs}}$. The fits are conducted at 7 wavelengths using the SPIRE, PACS, and the MIPS data at 70 and 24\mu m. The 24\mu m data helps in constraining the warm component, though its emission partly stems from stochastically heated small grains, not only from grains in thermal equilibrium. To maintain at least two degrees of freedom (Bevington & Robinson 1992), in the 2-component fit, we kept β fixed to values between 1 and 2. These values are typically found in models and observations of interstellar dust (see literature compiled by Dunne & Eales 2001). The fits of isothermal models do not reproduce the data well, the values of the reduced χ^2 are very high. To a large extent, this is because of the 24\mu m points, which clearly require a second, warm dust component. Two-component grey body models result in a much better agreement with the data. The best fitting model is the two-component model with $\beta = 1.5$. The χ^2_{red} values are...
Table 1. Results of fits of one and two emission components to the measured spectral energy distributions (SEDs) of the MIPS, PACS, SPIRE data of M33 shown in Figure 3

<table>
<thead>
<tr>
<th>Total gas mass M_{gas} [10^6 M$_\odot$]</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T$_f$/[K]</td>
<td>29</td>
<td>25</td>
<td>28</td>
<td>105</td>
</tr>
<tr>
<td>β</td>
<td>0.5</td>
<td>1.4</td>
<td>0.8</td>
<td>-1.8</td>
</tr>
<tr>
<td>χ^2</td>
<td>45</td>
<td>44</td>
<td>45</td>
<td>3</td>
</tr>
<tr>
<td>M$_{gas}$/M$_c$</td>
<td>250</td>
<td>230</td>
<td>180</td>
<td>160</td>
</tr>
</tbody>
</table>

Notes. For the two-component fits, the dust emissivity index was kept fixed. T$_f$, T_w are the temperatures of the cold and warm component. M_c, M_w is the total cold mass per annulus. M_w/M_c is the dust mass ratio of both components. χ^2_{red} is the χ^2 divided by the number of observed parameters minus the number of fitted parameters minus 1. The 100 μm flux density measured in the outermost zone was not used for the fits. The columns give the radial annuli: Total: 0 < R < 8 kpc, (1): 0 < R < 2 kpc, (2): 2 < R < 4 kpc, (3): 4 < R < 6 kpc, (4): 6 < R < 8 kpc. The last line at the bottom of the table gives the total gas masses M_{gas} = 1.36 (M(H$_i$) + M(H$_2$)) (Gratier et al. 2010).

References

Acknowledgements. The Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS and SPIRE consortia. We would like to acknowledge the support from Benoît Whitmore, Bruno Alberti, Pat Morris, Bidushi Bhattacharya, Michael Pohlen, Pierre Challe, George Bendo. The authors would like to thank all those who helped us processing the PACS and SPIRE data. In particular we would like to acknowledge support from Pierre Royer, Bruno Alberti, Pat Morris, Bidushi Bhattacharya, Marc Sauvage, Michael Pohlen, Pierre Challe, George Bendo. The authors would like to thank all those who helped us processing the PACS and SPIRE data. In particular we would like to acknowledge support from Pierre Royer, Bruno Alberti, Pat Morris, Bidushi Bhattacharya, Marc Sauvage, Michael Pohlen, Pierre Challe, George Bendo. The authors would like to thank all those who helped us processing the PACS and SPIRE data. In particular we would like to acknowledge support from Pierre Royer, Bruno Alberti, Pat Morris, Bidushi Bhattacharya, Marc Sauvage, Michael Pohlen, Pierre Challe, George Bendo. The authors would like to thank all those who helped us processing the PACS and SPIRE data. In particular we would like to acknowledge support from Pierre Royer, Bruno Alberti, Pat Morris, Bidushi Bhattacharya, Marc Sauvage, Michael Pohlen, Pierre Challe, George Bendo.

The Herschel Key Project, a part of the European Space Agency (ESA) Science Programme, is an ESA cornerstone mission. HIFI, PACS and SPIRE instrument projects are funded by the Dutch, German, Italian, Norwegian, Swedish and Spanish space agencies.