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ABSTRACT 

SCIENCE-BASED MANAGEMENT OF SHRUBLAND BIRDS IN 
VERMONT’S GREEN MOUNTAIN NATIONAL FOREST 

 
SEPTEMBER 2012 

 
JENNIER R. SMETZER B.A., BARD COLLEGE 

 
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Dr. David I. King  

 

Birds that breed in early-successional shrubland habitat are declining 

throughout the northeastern United States. The Green Mountain National Forest 

(GMNF) has identified early-successional habitats and their associated bird 

communities as a high management priority. In this study I assessed habitat 

conditions and bird abundance across a range of early-successional habitat types 

on the GMNF to evaluate the outcome of management practices and provide 

management recommendations. In specific, I described the manner in which 

treatment method, time since last treatment, and retained tree cover influenced 

bird abundance and habitat conditions in openings created through even-aged 

timber harvest, and those maintained as permanent wildlife openings through 

mechanical treatment and prescribed burning.   

I collected data during the 2010 and 2011 breeding seasons in 94 

managed openings that ranged from 1-15 years since last treatment. In each 

opening I conducted three 10 minute, 50 m radius point counts, and measured 

vegetation structure and composition at 20 sub-points using a point-intercept 

method. I used N-mixture models to relate abundance to management variables, 
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while correcting for factors that can affect detection. I modeled the effect of 

management variables on percent cover of bare ground, ferns, forbs, grasses, and 

short and tall woody vegetation using generalized linear models with a log link, 

and modeled understory vegetation height using general linear models. An 

information-theoretic approach was used to compare models, and model 

averaging was used in graphical representation of results.  

Habitat conditions differed most markedly between burned wildlife 

openings and silvicultural openings, and least between burned and mechanically 

treated wildlife openings. Cover of woody vegetation did not differ significantly 

among treatment types, and both wildlife opening types had more grasses and 

forbs than silvicultural openings. In relation to the findings of previous studies, 

these results suggest that the outcome of management activities may not depend 

solely on the type of treatment mechanism used, but on site-specific factors such 

as initial stand composition and prior land use. 

I detected 21 species of shrubland birds in the surveyed openings. Seven 

out of eight focal species were least abundant in silvicultural openings. I found 

little difference in bird abundance among burned and mechanically treated 

openings, likely reflecting the minimal difference in habitat between these 

treatment types. Six species exhibited a negative relationship between abundance 

and the basal area of retained conifer cover in both years of the study, and seven 

exhibited a similar trend with deciduous tree cover in both years. There were 

strongly supported relationships between time since treatment and abundance for 

all species, and individual species peaked at different times post treatment.  
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These results suggest that providing habitat for the entire suite of 

shrubland birds requires maintaining a range of early-successional conditions 

across the landscape. Furthermore, the data suggest that both wildlife openings 

and silvicultural openings are supporting early-successional shrubland birds in 

the GMNF, including several species of conservation concern. Wildlife openings 

supported a greater abundance of shrubland birds on this forest than silvicultural 

openings, indicating that the extra economic cost of treating permanent openings 

may be warranted. The strong negative response that many shrubland birds 

exhibited to retained tree cover suggests that managers can increase the number 

of shrubland birds that openings can support by removing as much overstory tree 

cover during treatments as possible. This tactic may be particularly useful for 

increasing the habitat value of future silvicultural openings for shrubland birds in 

the GMNF.  
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CHAPTER 1 

 

EFFECTS OF MANAGEMENT REGIME ON HABITAT STRUCTURE AND 

ABUNDANCE AND RICHNESS OF SHRUBLAND BIRDS IN WILDLIFE 

OPENINGS AND SILVICULTURAL OPENINGS 

 

1.1 Introduction 

Birds that breed in early-successional scrub-shrub habitat are declining 

throughout the northeastern United States (Askins 2000, Hunter et al. 2001, Dettmers 

2003). This population trend has been directly attributed to a loss of early-successional 

breeding habitat (Askins 1998, Askins 2000, Hunter et al. 2001).  Most of the naturally 

occurring, relatively stable shrub communities that were once extensive in the floodplains 

of large rivers and coastal areas in the northeastern US (Brooks 2003, Latham 2003) have 

been lost due to heavy development in these areas (DeGraaf and Yamasaki 2003). 

Further, many of the disturbance processes that have historically created and maintained 

these early-successional habitats such as fire, flooding, beaver activity, silviculture, and 

agriculture have been suppressed or abandoned due to economic or social pressure 

(Askins 2000, Thompson and DeGraaf 2001, Confer and Pascoe 2003, USDA Forest 

Service 2006). Maintaining the avian populations that breed in early-successional habitat 

types therefore requires direct and active management intervention (Hunter et al. 2001, 

Thompson and DeGraaf 2001, Litvaitis 2003).  
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 In response to the rapid decline in shrubland bird populations, numerous state and 

federal agencies are actively working to create and maintain scrub-shrub habitats (Oehler 

et al. 2006).  Silviculture has been widely advocated as an ecologically and economically 

viable method of creating early-successional habitat (DeGraaf and Yamasaki 2003). 

However, a very small proportion of the public land on which silviculture is permitted 

has been actually cut in either the middle Atlantic region or New England (Oehler 2003). 

Moreover, management techniques that are more popular with the public such as group 

selection cuts (Trani et al. 2001), create patches that are too small for many area-sensitive 

scrub-shrub birds (Costello et al. 2000, King and DeGraaf 2004). Consequently, 

maintaining permanent wildlife openings through repeated mechanical treatment or 

prescribed burning has become the most common method for conserving early-

successional shrublands in the northeastern United States (Oehler 2003).   

 Although permanent wildlife openings are widely used in shrubland bird 

management, it is unclear whether they provide adequate habitat (Askins 2000, Chandler 

et al. 2009a, King et al. 2009).  The relative conservation value of wildlife openings and 

silvicultural openings is also still poorly understood (Chandler et al. 2009a, King et al. 

2009). Much of the research on shrubland-bird habitat associations has been conducted 

primarily in regenerating forest and utility rights-of-way (Bulluck and Buehler 2006). 

Only one study to date has compared scrub-shrub bird abundance in managed wildlife 

openings and regenerating cuts (King et al. 2009).  Moreover, few studies have 

specifically investigated the manner in which shrubland bird abundance and community 

structure changes as a function of how much time has passed since a site's last treatment. 

The timing of management regimes is critical however, because shrubland birds typically 
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only have a short time period in which their structural habitat needs will be met in a given 

patch (DeGraaf and Yamasaki, 2003, Schlossberg and King 2009).  Investigating habitat 

associations across a broad range of early-successional habitat types and successional 

stages is thus imperative to effective conservation of shrubland birds.  For instance, 

studies that have focused on a narrow range of early-successional habitat types or a 

narrow range of successional stages have had less success in demonstrating clear habitat 

relationships than those that have spanned a range of management types and stand ages 

(Schlossberg et al. 2010).  

 The Green Mountain National Forest (GMNF) has identified early-successional 

habitats and their associated shrubland birds as a high management priority. However, 

baseline conditions for these habitats and their associated avian communities have not 

been thoroughly evaluated in this national forest. The objective of this study was to 

sample systematically over a successional gradient in silvicultural openings and in 

wildlife openings maintained by burning and mechanical treatment to examine the effects 

of management regime on bird abundance and habitat conditions, and provide 

management recommendations.  

 

1.2 Study area and methods 

1.2.1 Study area and site selection 

The study was conducted during 2010 and 2011 on the Green Mountain National 

Forest (GMNF), located in the southwestern and central portion of Vermont. The GMNF 

is approximately 162,000 ha in size (USDA Forest Service 2006). The forest cover is 
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primarily northern hardwoods, consisting of sugar maple (Acer saccharum),  American 

beech (Fagus grandifolia), red maple (Acer rubrum),  yellow birch (Betula 

alleghaniensis), paper birch (Betula papyrifera), and white ash (Fraxinus americana), 

with secondary cover types of red spruce (Picea rubens) and balsam fir (Abies balsamea) 

communities at higher elevations, and Eastern hemlock (Tsuga canadensis) and white 

pine (Pinus strobus) at lower elevations (USDA Forest Service 2001). Approximately 4% 

of the GMNF is in an early-successional state, with about 1,533 ha of managed upland 

openings, 703 ha of regenerating forest and 2,932 ha of shrubby wetlands (USDA Forest 

Service 2006). Managed early-successional habitat in this forest consists of regenerating 

silvicultural openings and permanent wildlife openings that were originally old log 

landings, silvicultural openings, pastures, agricultural fields, or orchards. Permanent 

openings are currently maintained through prescribed burning, mowing, and mechanical 

treatment with machinery such as hand saws, brushogs, chippers, or brontosaurus.  

 The dominant understory plant species in wildlife openings and silvicultural 

openings are raspberry (Rubus spp.),  goldenrod (Solidago spp.), bracken fern (Pteridium 

aquilinum), American beech, several grass species (Poaceae), red maple, striped maple 

(Acer pensylvanicum), pin cherry (Prunus pensylvanica), and spirea (Spirea spp.).  The 

openings across the forest vary in the amount of retained pole and saw-timber. This 

retained tree cover is typically dominated by American beech, red maple, sugar maple, 

pin cherry, yellow birch and eastern hemlock. Apple trees (Malus domestica) are also 

present on many openings  

 In 2010 I established 35 point-count stations in silvicultural openings, 30 in 

burned permanent wildlife openings, and 31 in mechanically treated permanent wildlife 
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openings. In 2011, I established 33 survey points in silvicultural openings, 32 in burned 

permanent openings, and 28 in mechanically treated permanent openings. The survey 

points were located in both the northern and southern portion of the GMNF (Figure 1). I 

only established point count plots in openings > 1 ha, because this is the size threshold 

for which area sensitivity has been observed in scrub-shrub birds (Costello et al. 2000, 

Chandler 2006). I obtained treatment histories for all managed openings on the forest 

prior to site selection. I preferentially located point count plots in wildlife openings that 

had been treated with only fire or only mechanical means, based on previous findings that 

complex management regimes can obscure the effects of the most recent treatment 

(Chandler et al. 2009a). Within each management type (burning, clearcut, and 

mechanical treatment), I chose openings ranging from one to fifteen years since their last 

treatment. Silvicultural openings in the 4-8 year time since treatment range were lacking 

on this forest, due to a temporary cutting ban. In order to represent these age classes in 

the study, in 2010 I included two 4 year old cuts on the Rutland town forest and four 5 

year-old Forest Service shelterwood cuts with high basal area removal. In the second year 

of the study, I surveyed the Rutland town forest sites and two of the shelterwood cuts 

again, and added eight clearcuts on private lands ranging from 1-8 years since treatment. 

As such, the composition of the survey sites was not identical between years, particularly 

since I had to drop a number of sites in the second year of the study due to age or 

accessibility issues.   

I established at least one 50 m radius point count plot in all the openings I chose 

for the study. In each year, 13 openings were large enough that I was able established two 

point count plots in them. All survey points were at least 250 m apart, and all were 
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located such that one point on the circumference of the 50 m radius fixed plot was within 

5m from an edge. I chose this arrangement to ensure that point-count plots in small and 

large openings had the same amount of edge in close proximity, as a number of shrub-

scrub species have been shown to avoid edges (Rodewald and Vitz 2005).  

  

1.2.2 Vegetation surveys   

 I measured vegetation structure and composition at 20 randomly selected sub-

points at each 50 m radius point-count plot using a point intercept method (King et al. 

2009). At each sub-point, I recorded the maximum height of the understory and overstory 

substrate, with woody plants classified to genus or species, and all other cover types 

categorized as forb, fern, grass, bare ground, slash or standing water. All vegetation cover 

> 3 m in height was classified as overstory, and all cover < 3 m in height as understory.  I 

quantified vertical structure by recording the number of woody and non-woody 

vegetation contacts on 0.5-m segments of a 3 m pole held vertically on the ground 

(Chandler et al. 2009b). I recorded the species and diameter at breast height (dbh) of all 

trees greater than 10cm at breast height at five 15 m radius sub-plots located in the center 

of the point-count location, and 35m away from the center in the four cardinal directions. 

I did not repeat tree species and dbh measurements at sites that were re-surveyed in the 

second year of the study, as I assumed the growth of pole and saw timber trees to be 

minimal over the course of one year.  
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1.2.3 Bird surveys 

 Birds were surveyed using 10 minute, 50 m radius point counts (Ralph et al. 

1995) between late May and mid-July. I visited all sites at least three times during the 

breeding season, to facilitate estimation of detection probability. The observer, date, time 

of survey, wind, and cloud cover were recorded during each survey. Surveys were 

conducted only on calm days with no precipitation between 0.530 h and 10.30 h. Visits 

with the highest wind were repeated at the end of the survey season when possible. No 

sites were consistently surveyed during early, mid, or late morning, in order to help 

standardize for the detection bias that can result if species sing more consistently during a 

particular time (Ralph et al. 1995). Observers were rotated through sampling locations. 

The species and mode of detection were recorded for all birds seen or heard. A few 

openings were irregularly shaped, and though greater than 1 ha in area, they were not 

wide enough to fully encompass a 50 m radius count circle. Aerial orthophotos and 

ArcGIS were used to establish a survey plot with the equivalent area of a 50-m radius 

plot (0.785 ha), and birds were counted only within that area. Females, birds of unknown 

sex, birds flying over the plot, and birds heard outside the 50 m radius point-count circle 

were not included in the analysis, except for Cedar Waxwings for which sex cannot be 

determined in the field.   

 

1.2.4 Statistical analysis 

 Habitat data for each vegetation plot were placed into substrate categories (fern, 

forb, grass, bare ground, woody vegetation) based on commonalities in growth and 
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structure following King et al. (2009).  Additionally, woody vegetation was separated 

into short (≤1.5m) and tall (>1.5m) size classes following Schlossberg et al. (2010).  

I modeled the habitat data from the two years of the study separately to avoid 

pseudoreplication, to investigate the consistency of the results between the two years, and 

because a number of the sites were not surveyed in both years of the study. Point count 

plots that were in the same opening were assumed to be independent samples, because 

the plots were at least 250 m apart. Moreover, the degree and intensity of treatment 

appeared to typically be quite heterogeneous across the openings, despite their formal 

designation as contiguous stands on GMNF maps.  

Habitat response variables were related to management variables using general 

and generalized linear models. Management variables included treatment type (clearcut, 

prescribed burning, and mechanical treatment), time since treatment, and a quadratic term 

for time since treatment. I was interested in modeling the relationship between treatment 

frequency and vegetation characteristics but I did not have data on the year in which 

wildlife openings were first established. I considered interaction terms for time since 

treatment and treatment type; however, interactions were not in top models for any 

response variables, so I dropped them from the analysis. I related understory vegetation 

height to management variables using general linear models with the "lm" function in R. 

I modeled the understory counts of ferns, forbs, grasses, bare ground, and tall and short 

woody vegetation using generalized linear models with a log link (Quinn and Keough 

2003) as these data were highly skewed and non-normal, even after transformation. I 

chose the most appropriate exponential distribution for modeling the non-normal 

substrate cover data by comparing the AICc values and goodness of fit of global models 
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under the Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative 

binomial distributions. Finally, I used non-parametric Mann–Whitney tests to compare 

the basal area of retained coniferous and deciduous tree cover among treatment types, as 

these data were highly skewed and non-normal even after transformation.  

Model selection was accomplished using an information theoretic approach, and 

the amount of variability explained by the models was approximated using Nagelkerke’s 

R2 index (Nagelkerke 1991).  I considered covariates present in models with a delta AICc 

≤ 2 as moderately supported, and those with 95% confidence intervals not including zero 

as strongly supported. Parameter estimates for the clearcut and mechanical treatments 

were compared using z tests. For graphical representation of results, I averaged the model 

predictions using Akaike (AICc) weights (wi) as described by Burnham and Anderson 

(2002), in order to allow for multi-model inference. Models were fit and parameters 

estimated using the R software package, version 2.10.0 (R Development Core Team Year 

2009), and Akaike weights (wi) were estimated using the AICmodavg library in the R 

software package according to the formula: 

𝑊𝑖 =   
exp�−0.5 ∗ ∆𝐴𝐼𝐶𝑐,𝑖�

∑ exp (−0.5 ∗ ∆𝐴𝐼𝐶𝑐,𝑖
𝐼
𝑖=1 )

 

 I modeled the relationship between management covariates and the abundance of 

shrubland birds (designated following Schlossberg and King 2007) with N-mixture 

models (Royle 2004). This modeling approach is apt because it avoids bias in abundance 

estimates by accounting for individuals that are present but not detected (Thompson 

2002). Species that were found in ≥10% of the plots and for which there were at least 40 

observations in each year were chosen as focal species. I modeled the abundance data 

from the two years of the study separately to avoid pseudoreplication, to investigate the 
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consistency of the results between the two years, and because a number of the sites were 

not surveyed in both years of the study. I did not analyze bird abundance in relation to 

habitat variables, because my primary objective was to evaluate the influence of 

management factors that could be directly controlled by managers. 

 Abundance (λ) was modeled in relation to management variables using a log link, 

and probability of detection (p) using a logit link. Management variables included time 

since treatment, and the three treatment types: clearcut, mechanical treatment, and 

prescribed burning. I also considered the combined basal area of the retained pole and 

saw timber trees as a management covariate, because this habitat factors-though not 

directly related to shrubland conditions- could affect the abundance of shrubland birds. I 

modeled deciduous and coniferous basal area separately because they were not 

correlated, and thus potentially offered unique information; moreover, I expected that 

species could respond differentially to coniferous and deciduous cover. I included a 

quadratic term for time since treatment as a management variable, because previous 

studies have shown that some shrubland species peak in abundance at intermediate times 

within the successional gradient (Schlossberg and King 2009).  I was interested in 

modeling the relationship between treatment frequency and bird abundance; however, I 

did not have data on the year in which wildlife openings were first established. I 

considered interaction terms for time since treatment and treatment type; however, 

interactions were not in top models for any species, so I dropped them from the analysis. 

Probability of detection was modeled in relation to observer, time of day, date, a 

quadratic term for date, understory vegetation height and wind intensity, as these factors 
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have been previously shown to affect detectability (Kery et al. 2005, Aldredge et al. 

2007, Johnson 2008).  

 In the interest of constructing a reasonably sized list of candidate models, for each 

species, I first determined a limited set of detection covariates to include in subsequent 

candidate models. I accomplished this by fitting all subsets of the detection covariates 

with the global suite of management variables, and identifying the observation covariates 

that were in models with a delta AICc of  two or less, and statistically significant at an 

alpha of 0.1. For each species, I then fit all subsets of the management variables with this 

finite set of "best" detection covariates fixed.   

I used the same model selection and averaging procedures as described for the 

habitat models, and the same criteria for assessing the strength of evidence for covariates. 

The most appropriate exponential distribution for modeling abundance was chosen by 

comparing the AICc values and goodness of fit of global models under the Poisson and 

negative binomial error distributions. Variables were assessed for normality and outliers, 

and log transformed as appropriate. All continuous variables were standardized to a mean 

of zero and a standard deviation of one to facilitate model convergence. Models were fit, 

and parameters and Akaike (AICc) weights (wi) were estimated using the unmarked 

library in the R software package, version 2.10.0 (R Development Core Team Year 

2009).   

 I compared species richness among the burned wildlife openings, mechanically 

treated wildlife openings, and silvicultural openings using sample-based rarefaction 

curves. I chose to use sample-based rarefaction over individual-based rarefaction because 

the latter can overestimate the number of species that would have been found at a lower 
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sampling intensity (Gotelli and Colwell 2001). Moreover, by treating the group of 

individuals at any given survey plot as the unit of replication, sample-based species 

accumulation curves account for patchiness in the data, between sample heterogeneity, 

and the reality that species may occur nonrandomly among samples due to spatial 

autocorrolation. As such, individuals cannot be sampled randomly (Gotelli and Colwell 

2001). This is particularly true for this data, as the unit replication in this study was the 

point-count plot, individual  

For each survey site, I used the data from the sampling period in which the 

greatest number of males was detected within the 50 m radius survey area, as the 

maximum number of birds detected over repeated sampling occasions is more 

representative of true abundance than the mean number of birds detected (Toms et al. 

2006). I compared richness among the three opening treatment types for the shrubland 

birds detected, and for the full community of birds detected. Rarefaction curves were 

constructed using a bootstrapping procedure in the R software package, version 2.10.0 (R 

Development Core Team Year 2009).   

 

1.3 Results 

1.3.1 Habitat characteristics  

 Management covariates were in supported models for all habitat response 

variables, though the null model was the most highly supported for forb cover in 2011. 

The mean adjusted R2 value for habitat models was 0.18, and the amount of variability 

explained by the models differed greatly among habitat response variables, with adjusted 



 

13 

R2 values ranging from 0.00 for forb cover to 0.29 for tall woody vegetation (Table 1). 

Akaike weights (wi) varied widely among habitat response variables and even among 

years for individual response variables, ranging from 0.86 for bare ground, to 0.14 for 

forb cover.  

The results of habitat models were fairly consistent among years. For all habitat 

response variables, supported models (with a delta AIC<2) had the same covariates from 

year to year, with the exception of a treatment effect for tall woody vegetation, and a time 

since treatment effect for fern cover. Moreover, the signs of the parameter estimates in 

supported models were consistent from year to year for all habitat response variables, 

with the exception of the mechanical treatment effect for fern and forb cover. There were 

two notable inconsistencies among years. First, the null model was the most strongly 

supported for forb cover in 2011, while a treatment effect was strongly supported for this 

response variable in 2010, and second, woody vegetation increased linearly in 2010, but 

showed a modal pattern in 2011.    

Treatment type was in top models for bare ground, forbs, grasses, ferns, and tall 

woody vegetation, but was not present in top models for overall cover of woody 

vegetation, short woody vegetation, or understory vegetation height (Table 1).  I found 

strong evidence that silvicultural openings had more bare ground and less fern and forb 

cover than burned openings, and moderate evidence that they had less grass cover and 

more tall woody vegetation than burned openings. Mechanically treated sites had a 

greater cover of grasses and forbs than silvicultural openings, and had less bare ground 

and tall woody vegetation than silvicultural openings, though 95% confidence intervals 

for the latter two parameter estimates contained zero. Finally, I found strong evidence 
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that mechanically treated openings had more grass and less fern cover than burned 

wildlife openings, and moderate evidence that they had more bare ground and less tall 

woody vegetation than burned sites. 

 Time since treatment was in supported models in both years of the study as either 

a linear or quadratic term for all habitat response variables with the exception of fern 

cover (Table 1). I found strong evidence that woody vegetation, tall woody vegetation 

and understory vegetation height increased with time since treatment, and that short 

woody vegetation and grass cover decreased as a function of time since treatment. A 

negative time since treatment effect was also present in top models for forb and fern 

cover, though 95% confidence intervals for these parameter estimates overlapped zero. 

Cover of bare ground, woody vegetation, tall woody vegetation, and understory 

vegetation height all had a quadratic term for time since treatment in top models, and 

exhibited a quadratic form in the shape of their model-averaged predictions (Figure 3).   

The amount of retained overstory differed significantly between the three 

treatments (Table 2). Silvicultural openings had a higher basal area of retained deciduous 

trees than both mechanically treated and burned wildlife openings (p=0.027 and p=0.001 

respectively in 2010, p=0.04 and p=0.00 respectively in 2011). Silvicultural openings 

also had a higher basal area of retained coniferous trees than burned wildlife openings 

(p=0.009 in 2010 and p=0.01 in 2011). Mechanically treated wildlife openings had a 

higher basal area of deciduous trees than burned sites in 2011 (p=0.03). 
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1.3.2 Bird abundance and detection probabilities  

 Including only males detected within survey plots, and all sexes for Cedar 

Waxwing, I recorded 2,031 observations of 66 species in 2010 and 2,199 observations of 

69 species in 2011 (Table 3). These data included 21 species of shrubland birds. I had 

sufficient sample sizes to estimate abundance for eight shrubland species: Alder 

Flycatcher, Cedar Waxwing, Common Yellowthroat, Chestnut-sided Warbler, Indigo 

Bunting, Mourning Warbler, Song Sparrow, and White-throated Sparrow (scientific 

names in Table 3).   

 Management variables were in supported models for all eight focal species. The 

mean adjusted R2 value for N-mixture models was 0.38, and the amount of variability 

explained by the models differed greatly among species, with adjusted R2 values ranging 

from 0.66 for Chestnut-sided Warblers and Indigo Buntings to 0.07 for Mourning 

Warblers (Table 4). Akaike weights (wi) varied widely among species and even among 

years for individual species, ranging from 0.64 for Common Yellowthroats, to 0.10 for 

Song Sparrows.  

 Differences in bird abundance were most distinct between burned wildlife 

openings and silvicultural openings. There was strong evidence that Alder Flycatchers, 

Cedar Waxwings, Chestnut-sided Warblers, Common Yellowthroats, Indigo Buntings, 

and White-throated Sparrows were more abundant in burned openings than in 

silvicultural openings and moderate evidence of the same pattern for Song Sparrows 

(Table 4). I found strong evidence that Chestnut-sided Warblers, Common Yellowthroats, 

Indigo Buntings, and Cedar Waxwings were more abundant in mechanically treated 

openings than in silvicultural openings, and moderate evidence of the same pattern for 
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White-throated Sparrows and Song Sparrows. There was moderate evidence that 

Mourning Warblers were more abundant in silvicultural openings than in either 

mechanically treated or burned wildlife openings. 

Differences in bird abundance were least pronounced among burned and 

mechanically treated wildlife openings, and the direction of the mechanical treatment-

effect parameter estimates were inconsistent from year to year for all but one species 

(Table 4). White-throated Sparrows were more abundant in burned openings than in 

mechanically treated openings in both years of the study. There was moderate evidence 

that Alder Flycatchers were more abundant in burned openings than in mechanically 

treated sites, and that Song Sparrows and Mourning Warblers were more abundant in 

mechanically treated sites than in burned openings, though for each of these three 

species, treatment effects were only present in top models in one year of the study.    

 Time since last treatment was a strong predictor of bird abundance. A linear and 

quadratic term for this covariate were both present in top N-mixture models for all 

species in both years, though for Mourning Warbler and Song Sparrow there was only 

strong support for these covariates in one year (Table 4).  White-throated Sparrows 

reached maximum abundance immediately following treatment in both years (Figure 4). 

All other species reached maximum abundance at intermediate times since treatment. 

 The variables for basal area of retained coniferous and retained deciduous trees 

were both in supported N-mixture models for all species in both years of the study (Table 

4). The deciduous basal-area parameter estimates were consistently negative among years 

and supported models for all species except for Mourning Warbler. Similarly, the 

coniferous basal-area parameter estimates were consistently negative among years and 
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supported models for all species except Cedar Waxwing and White-throated Sparrow. 

This consistency indicates the importance of retained tree cover in determining shrubland 

bird abundance. The negative relationship between basal area of retained deciduous trees 

and abundance was strongly supported for Chestnut-sided Warblers, Common 

Yellowthroats, and White-throated Sparrows. The inverse relationship between basal area 

of retained conifers and abundance was strongly supported for Indigo Buntings, Alder 

Flycatchers, Chestnut-sided Warblers, Song Sparrows and Mourning Warblers. There 

was moderate evidence that White-throated Sparrow abundance was positively related to 

basal area of retained coniferous trees.  

 All detection covariates that were considered in the modeling process were 

supported in top N-mixture models for at least one species (Table 5). Observer was an 

important detection covariate for every species in every year, with the exception of Song 

Sparrows. There was strong evidence that four species were less detectable in sites with 

tall understory vegetation in at least one year of the study, and moderate evidence of this 

effect for one other species. Detectability of Alder flycatchers, Indigo Buntings, and Song 

Sparrows decreased throughout the season and detectability of White-throated Sparrows 

increased, though for the latter, the effect was only moderately supported. Detectability 

of Common Yellowthroats, Indigo Buntings and Cedar Waxwings increased throughout 

the 2010 season, and decreased throughout the 2011 season, though this date effect was 

only strongly supported in both years for Cedar Waxwings. I found strong evidence that 

Cedar Waxwings and Chestnut-sided Warblers were less detectable during surveys with 

higher wind speed, and moderate evidence that wind increased the detectability of White-
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throated Sparrows.  Finally, I found strong evidence that Indigo Buntings became more 

detectable throughout the morning survey period in 2010. 

 

1.3.3 Species richness 

 The rarefaction curves constructed for the shrubland species encountered within 

the point-count plots did not reach an asymptote for any of the treatment types in either of 

the years, indicating that there are likely more shrubland species that use early-

successional habitat in this region than the 21 species that I detected during this study 

(Figure 5). The 95% confidence intervals on the species accumulation curves overlapped 

for all pairwise comparisons of treatment types, indicating that species richness did not 

differ between treatments. I observed all the same results for the rarefaction curves 

representing the full community of birds (Figure 6).  

 

1.4 Discussion  

 The precipitous decline of shrubland birds in the northeastern United States has 

prompted scientists and managers from nearly two dozen agencies and Universities in 

this region to work toward developing a unified monitoring and management program 

designed to document population trends, and assess the efficacy of management options 

(Bried et al. 2011). This study contributes to this ongoing conservation effort by 

assessing the outcome of the current habitat management practices on the GMNF.   

 The openings on the GMNF provide habitat for a number of shrubland species of 

conservation concern. Quite a few of the relatively abundant species in these openings, 
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including White-throated Sparrow, Indigo Bunting, Chestnut-sided Warbler, Mourning 

Warbler, Canada Warbler, Alder Flycatcher and Nashville Warbler are listed by Partners 

in Flight as species of continental importance in the Northern Forest and/or Eastern 

Avifaunal Biome (Rich et al. 2004). Other species that are relatively abundant in this 

national forest, such as Common Yellowthroat, and Song Sparrow are also facing 

significant population declines in the Eastern US (Sauer et al. 2008). Continued and 

effective management of shrubland habitat in the GMNF is, therefore, critical, 

particularly since many of these species have a large majority of their breeding 

population in the Northeast (Rich et al. 2004).  

 

1.4.1 Habitat characteristics 

 In accordance with a number of previous studies, I found that habitat 

characteristics were related to management, though the amount of variability in habitat 

response explained by management variables on the GMN was lower than in a similar 

analysis conducted by Chandler (2009).  My finding that mechanically treated wildlife 

openings had a greater cover of grasses and forbs than silvicultural openings is consistent 

with results from previous studies comparing regenerating silvicultural openings to 

mechanically treated rights-of-way (Bulluck and Buehler 2006) and mechanically treated 

wildlife openings (King et al. 2009).  I also observed more grasses and forbs in burned 

openings than in silvicultural openings in one year of the study. This result is consistent 

with the findings of Fink et al. (2006), who compared burned glades and regenerating 

clearcuts. Finally, my finding that silvicultural openings had the more bare ground than 

mechanically treated openings was consistent with the findings of King et al. (2009).  
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Some of the relationships I observed between treatment mechanism and habitat 

characteristics were, however, inconsistent with findings from previous studies, 

particularly in regards to woody vegetation.  I did not observe any significant difference 

in the overall amount of woody vegetation among any of the treatment methods. In 

contrast, King et al. (2009) found that silvicultural openings had a greater cover of shrubs 

and trees than mechanically treated wildlife openings; Bulluck and Buehler (2006) 

observed more saplings in regenerating clearcuts than in mechanically treated rights-of-

way; and Fink et al. (2006) found more woody vegetation in burned openings relative to 

regenerating clearcuts. Moreover, previous research comparing sites treated through 

prescribed burning and mechanical treatment reported pronounced differences in woody 

plant cover (Christensen 1985, Zuckerberg and Vickery 2006, Chandler et al. 2009a).  In 

contrast to all these studies, I only found modest evidence in 2011 that the amount of tall 

woody vegetation differed among treatments, with silvicultural openings having the 

greatest cover, mechanically treated openings the least, and burn openings intermediate.  

 Geographic and site-specific differences in how plant communities respond to 

disturbance can account for some of the inconsistency between this and previous studies 

in how management activities influenced habitat structure and composition. For instance, 

management can have different habitat outcomes regionally, because geographic 

variability in climate, soil, and local plant community composition can impact plant 

community response to disturbance (Picket and White 1985).   

The effect of prescribed burning on woody plant composition may also have 

interacted with land use history and initial stand composition in the GMNF.  It is well 

documented that initial stand composition can influence habitat composition post-
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disturbance (Pickett and White 1985). On the GMNF, many of the burned wildlife 

openings are managed for wild blueberry (Vaccinium spp.) production. As such, they 

may have more fire-tolerant woody species (or simply more woody cover in general) than 

managed shrublands in other studies, and fire disturbance may not have as pronounced an 

effect on woody plant cover in these openings as it might in other regions. Indeed, it is 

well documented that although fire can retard the establishment of woody vegetation in 

areas dominated by herbaceous or grassy cover, once established, shrub cover typically 

will increase or at least remain stable, even under a fairly frequent burning regime 

(Heisler et al. 2003, Zuckerberg and Vickery 2006).  

The effect of mechanical treatment on woody plant composition may have 

similarly interacted with land use history and initial stand composition in this study. 

Mechanically treated sites in the GMNF are a mixture of old fields, orchards, and forests 

that have been repeatedly cut. This variability in land-use equates to a predominance of 

woody stump-sprouted vegetation in some sites, and grassy vegetation in other sites. As 

such, my finding that mechanically treated sites did not differ greatly in woody 

vegetation cover relative to other treatments may simply have been a function of 

variability in initial stand composition. In support of this hypothesis, King et al. (2009) 

found pronounced differences between silvicultural openings and mechanically treated 

“old field” wildlife openings in Massachusetts, while Luken et al. (1992) found very little 

difference in habitat characteristics between regenerating forest and mechanically treated 

power line rights-of-way that were originally forest. Similarly, though Bulluck and 

Buehler (2006) found more saplings in regenerating clearcuts than in mechanically 

treated rights-of-way, the two treatments did not differ in shrub cover.  
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1.4.2 Bird abundance and detection probabilities 

 Although there have not been many systematic comparisons of bird abundance 

between permanent wildlife openings and silvicultural openings, studies of shrubland 

birds in other early-successional habitats suggested that they are sensitive to different 

management regimes. Previous studies reported that silvicultural openings differ in their 

bird communities and habitat conditions between power line rights-of-way and 

revegetated strip mines (Bulluck and Buehler 2006), forest edge and naturally occurring 

cedar glades maintained through fire (Fink et al. 2006), and natural openings maintained 

through burning (Schulte and Niemi 1998). The one study to date that specifically 

compared bird abundance in silvicultural openings and permanent wildlife openings also 

reported pronounced differences in shrubland bird communities (King et al. 2009).   

The mean abundance levels I observed for shrubland species in the GMNF (Table 

6&7) were comparable to previous studies, with a few exceptions. Abundance of 

Chestnut-sided Warblers in mechanically treated openings on the GMNF was similar to 

what Chandler et al. (2009a) reported in similar openings in New Hampshire; however, 

Alder Flycatchers, Indigo Buntings, Cedar Waxwings, and White-throated Sparrows were 

slightly more abundant in the GMNF than in New Hampshire. Abundance of these four 

species was similar in the GMNF to what King et al. (2009) reported for silvicultural 

openings and mechanically treated wildlife openings in Massachusetts. Song Sparrows 

were generally less abundant in the GMNF relative to previous studies (Chandler et al. 

2009a, King et al. 2009, Schlossberg et al. 2010). In contrast, I observed a greater 

abundance of Mourning Warblers relative to King et al. (2009) in silvicultural openings 



 

23 

and mechanically treated wildlife openings and Chandler et al. (2009a) in burned and 

mechanically treated wildlife openings. I also observed more Common Yellowthroats and 

Chestnut-sided Warblers in mechanically treated sites relative to King et al. (2009), and 

more Chestnut-sided Warblers in silvicultural openings.  

Despite some species-specific differences between this and previous studies in 

absolute abundance, many of my observations regarding how bird abundance differed 

between treatments were consistent with previous studies. Mourning Warblers were most 

abundant in silvicultural openings on the GMNF. This finding is in accordance with 

previous studies comparing bird abundance in regenerating forests to mechanically 

treated wildlife openings (King et al. 2009) and burned openings (Schulte and Niemi 

1998). I found that all other focal species were least abundant in silvicultural openings on 

the GMNF. Consistent with this finding, King et al. (2009) found that White-throated 

Sparrows, Indigo Buntings, and Song Sparrows were more abundant in mechanically 

treated wildlife openings relative to regenerating forest, Schulte and Niemi (1998) found 

that Indigo Buntings were more abundant in burned areas than in silvicultural openings, 

and Bulluck and Buehler (2006) reported that Chestnut-sided Warblers, Indigo Buntings, 

Song Sparrows, and Common Yellowthroats were less abundant in silvicultural openings 

than in other early-successional habitats.  

However, a few of my species-specific results in how bird abundance differed 

between treatments were inconsistent with those of previous studies. In contrast to my 

findings in Vermont, and the findings of Bulluck and Buehler (2006), both King et al. 

(2009) and Schulte and Niemi (1998) reported that Chestnut-sided Warblers were most 

abundant in regenerating forests. Moreover, King et al. (2009) found no difference in 
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Common Yellowthroat abundance among mechanically treated wildlife openings and 

regenerating forest, while this species was least abundant in silvicultural openings on the 

GMNF.  

 Some of the inconsistency between this and previous studies in species-specific 

responses to treatment may be explained by variability among studies in how habitats 

responded to management. Fine-scale habitat attributes are critical in determining 

foraging, nesting, roosting, and predator evasion opportunities (Hilden 1965, Sabo 1980, 

Martin 1998). If there are regional differences in how habitats respond to disturbance- as 

was indicated by my vegetation results- it seems reasonable to expect that patterns of bird 

abundance may reflect vegetation characteristics more strongly than management 

categories per se.  

 Most of the differences in bird abundance that I observed between regenerating 

cuts and burned and mechanically treated wildlife openings can be explained by 

differences in habitat composition among the treatments, and previously documented 

species-specific habitat associations. For instance, Indigo Buntings, Common 

Yellowthroats, White-throated Sparrows and Song Sparrows were more abundant in both 

wildlife opening types than they were in silvicultural openings. These species all require 

a combination of dense herbaceous and shrub cover (Guzy and Ritchison 1999, Arcese et 

al. 2002, Confer and Pascoe 2003, Holmes and Pitt 2007, Schlossberg and King 2007, 

Falls and Kopachena 2010). In turn, both types of wildlife opening had a more even 

distribution of herbaceous and woody plant cover than the silvicultural openings, in 

which 75% of the understory substrate was either bare ground or woody vegetation. 

Clearcuts had the highest cover of bare ground in the GMNF, and the lowest abundance 
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of shrubland birds, and bare ground has been previously shown to negatively influence 

abundance of shrubland species (Schlossberg et al. 2010).  

Mourning Warblers were the only species most abundant in silvicultural 

openings. This species tends to prefers significant canopy closure (Dunn and Hall 2010), 

and the basal area of canopy trees was greatest in silvicultural openings. Mourning 

warblers are also associated with dense, tall woody vegetation (Holmes et al. 2007, 

Schlossberg and King 2007), which was most abundant in regenerating clearcuts. In 

contrast, it was somewhat surprising that Chestnut-sided Warblers and Alder Flycatchers 

were least abundant in silvicultural openings, as these species are associated with dense 

stands of shrubs and saplings (Thompson and Capen 1988, DeGraaf and Yamasaki 2001, 

Hagan and Meehan 2002, Holmes et al. 2007, Schlossberg and King 2007, Chandler et al. 

2009a), and are known to seek high perches for singing and foraging (Richardson and 

Brauning 1995, Lowther 1999).  

 Some of the differences I observed in bird abundance between wildlife openings 

and regenerating forest may also be explained by specific plant taxonomic preferences. 

For instance, Chestnut-sided Warblers are known to prefer deciduous cover, and avoid 

conifers (Keller and Smith 2003, Schlossberg and King 2007, King et al. 2009). This 

species was least abundant in silvicultural openings in the GMNF, the opening type with 

the greatest amount of coniferous overstory. Similarly, Schulte and Niemi (1998) 

reported that Chestnut-sided Warblers preferred habitats that contained primarily red 

maple saplings over ones that had a higher cover of coniferous species. Alder Flycatchers 

prefer dense wet stands of shrubs (DeGraaf and Yamasaki 2001, and are associated with 

alders and willows (King et al. 2010, Schlossberg et al. 2010), and Common 
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Yellowthroats have been associated with both willow (Baril et al. 2011) and alder species 

(Schlossberg et al. 2010). These species were both more abundant in wildlife openings 

and over the course of the study, 41 out of the 51 observations of alders and willows were 

in wildlife openings. 

 Despite differences in habitat composition between burned and mechanically 

treated wildlife openings, I only found moderate evidence that bird abundance differed 

between these treatments. This observation was in accordance with the findings of Van 

Dyke et al. (2004) and Chandler et al. (2009a), the latter of whom posited that the effects 

of the most recent treatment may be obscured if sites have complex treatment histories. 

Despite the fact that I surveyed in all the sites on the GMNF with simple treatment, many 

of the permanent wildlife openings on the GMNF, and in this study have been both 

burned and mechanically treated.  In addition, the two wildlife opening treatment types 

were most different in grass and fern cover, which may not be as biologically important 

for species as shrub and forb cover. Moreover, these differences in grass and fern cover 

may simply not have been large enough to have any biologically meaningful influence on 

habitat quality for the focal shrubland species, despite being statistically significant.  

 Consistent with the results of most previous research (but see Chandler 2006), I 

found that the abundance of shrublands birds was strongly related to time since last 

treatment. Species-specific temporal patterns of abundance were also largely consistent 

with habitat-associations observed in previous studies. For instance, in accordance with 

the findings of previous studies, (DeGraaf and Yamasaki 2001, Keller and Smith 2003, 

Chandler 2006, and Schlossberg and King 2009) White-throated Sparrows peaked in 

abundance in the GMNF immediately after treatment. This species is associated with 
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grasses and herbaceous cover (Schlossberg and King 2007), which were most abundant 

immediately or shortly after treatment, and avoids the dense tall woody stems (Hagan and 

Meehan 2002) that are characteristic of older stands. White-throated Sparrows also nest 

and forage on or near the ground, and thus require the low vegetation cover that was 

characteristic of the younger openings in this study.  

 The modal pattern of abundance that I observed for a number of species has been 

previously demonstrated for Common Yellowthroat (Keller et al. 2003), Alder 

Flycatcher, Song Sparrow (Chandler 2006), and Chestnut-sided Warbler (Keller et al. 

2003, Holmes et al. 2007, Schlossberg and King 2009). Many of the modal species in the 

GMNF either nest or forage in dense, woody understory vegetation (Richardson and 

Brauning 1995, Guzy and Ritchison 1999 Lowther 1999), which was most abundant 

approximately 6 to 10 years post-treatment, when both short and tall woody vegetation 

were present. I observed a modal pattern of abundance for Song Sparrows, and Indigo 

Buntings, unlike Schlossberg and King (2009) who found these species to be most 

abundant immediately following treatment. Notably however, these two species peaked 

in abundance earlier than most of the other modal species, perhaps reflecting the fact that 

both require a high cover of forbs and grasses for seed foraging (Arcese et al. 2002, 

Payne 2006), and both nest on or close to the ground, and thus require low-stature 

vegetation in which to place and hide nests (Confer and Pascoe 2003, Chandler 2006, 

Payne 2006).  Previous research has suggested that these temporal patterns of bird 

abundance reflect similar temporal patterns in availability of nesting and foraging habitat 

post-disturbance (Titterington et al. 1979, DeGraaf 1991, Holmes and Pitt 2007, 

Schlossberg and King 2009).  In support of this, Keller et al. (2003) reported a direct 
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correlation between a dramatic increase in leaf area and avian richness in newly 

regenerating cuts, and a peak in arthropod biomass around five to seven years post 

treatment. 

 In accordance with previous studies, many shrubland birds in the GMNF were 

less abundant in areas with a higher basal area of tree cover. A negative relationship 

between the basal area of deciduous trees and abundance was previously documented for 

White-throated Sparrows (King and DeGraaf 2000), Common Yellowthroats (King and 

DeGraaf 2000, Hagan and Meehan 2002), Chestnut-sided Warblers, and Mourning 

Warblers (Jobes et al. 2004). Similarly, both Alder Flycatchers, (Schulte and Niemi 1998, 

DeGraaf and Yamasaki 2001, Schlossberg and King 2007) and Cedar Waxwings (Witmer 

et al. 1997, Schlossberg and King 2007) are known to prefer areas with little retained tree 

cover. My finding that Indigo Bunting, Alder Flycatcher and Song Sparrow abundance 

was inversely related to conifer cover is however inconsistent with the results of King 

and DeGraaf (2000), who compared bird abundance in mature forest, clearcuts, and 

shelterwood cuts in New Hampshire. However, the range of variation in basal area of 

conifers was significantly greater in the GMNF than it was in the King and DeGraaf 

(2000) study.  

 Detection covariates were included in supported models for all species, 

demonstrating the importance of accounting for detection probability when estimating 

bird abundance. Despite having well trained observers, in accordance with previous 

studies (Moore et al. 2004, Chandler 2006), I found that probability of detection was 

most consistently and strongly influenced by differences in observer ability. The decrease 

in detectability of Alder flycatchers, Indigo Buntings, and Song Sparrows throughout the 
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breeding season may be related changes in singing rates associated with nesting or 

reproductive status (Best 1981,Krebs et al. 1981, Cuthill and Hindmarsh 1985). The 

inconsistent relationship between detectability and date for Cedar Waxwings in the two 

years of the study may simply be related to patterns of food abundance, and subsequent 

nomadic movements into and out of the surveyed openings. Previous studies have 

reported that some species were more detectable in lower understory vegetation and some 

in taller vegetation (Bibby et al. 1985, Confer and Pascoe 2003). It is not surprising that 

wind significantly reduced detectability for two species; however, my finding that White-

throated Sparrows were more detectable in high wind is perplexing. My observation that 

four species were more detectable in lower-stature vegetation was most likely a 

consequence of observers being able to see birds that were not singing in areas with 

shorter vegetation. Detectability of Indigo buntings was related to time of day. This result 

probably reflects that singing rates are often variable throughout the day (Skirvin 1981), 

particularly for this species, which sings especially loudly during the hottest part of the 

day from high perches (Payne 2006).  

 

1.4.3 Species Richness 

 My finding that richness of shrubland species did not differ among treatments is 

in accordance with the findings of Chandler (2006), but inconsistent with the results of 

Schlossberg and King (2007), and Schulte and Niemi (1998). Vegetation structure and 

composition are known to influence bird abundance. Because I observed differences in 

habitat composition between treatment types, it seems reasonable to expect that each 

treatment type might host a different community of early successional birds. However, 
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unlike the N-Mixture models, my comparison of species richness across treatments did 

not control for the variability in stand age. Habitat conditions were strongly influenced by 

time since treatment, and this covariate was in top models for all measured habitat 

variables. Thus, I may have observed the same community of shrubland birds in all 

treatments, simply because I sampled across such a wide range of stand ages and in turn, 

a wide range of vegetation structure and composition.  In support of this, Chandler (2006) 

sampled in mechanically treated and burned sites ranging from 1-18 years since treatment 

and found no difference in species richness. In contrast, Schulte and Niemi (1998) 

sampled in burned and clearcut sites of the same age, and reported higher species 

richness in burned sites.  Though Schlossberg and King (2007) found a difference in 

shrubland bird richness between wildlife openings and silvicultural openings, the studies 

they used to construct the rarefaction curves did not survey over the same exact range of 

stand ages. As such, the data sources they used in their analysis may represent different 

snapshots in time of habitat conditions and bird communities.  

Similarly, my finding that species richness did not differ among treatments for the 

full suite of species observed in the plots may be related to the variability in stand age 

within each treatment type, as well as the high variability in retained basal area for each 

treatment type.  Because the silvicultural openings had a higher median basal area of 

retained tree cover, I expected that they might be able to meet the needs of a wider range 

of species, and thus have greater species richness. Indeed, previous studies have 

demonstrated that intermediate levels of cutting- as in shelterwood cuts, or in systems 

with retention of residual trees in even-aged harvests (EAR treatments) - are capable of 

providing habitat for both early-successional species and mature-forest species (DeGraaf 
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1991, King and DeGraaf 2000, Rodewald and Yahner 2000). However, in each treatment 

type, sites ranged from low to high basal area retention. Therefore each treatment type 

had sites that were potentially capable of supporting both shrubland and some mature-

forest species.  

 

1.4.4 Limitations and Scope of Inference 

 Although this study spanned a very large geographic area of Vermont, it should 

not necessarily be assumed that the results are relevant throughout the greater New 

England region. For instance, the sites I surveyed are unique to the management regimes 

implemented by the GMNF. Burn intensity, method of mechanical treatment, amount of 

tree cover left during management, and the land use history of managed openings can be 

vary significantly from agency to agency. As such, the impact of management regime on 

habitat characteristics and bird communities in the GMNF may not be relevant across all 

managed forests.   

 In this study, I did not account for landscape attributes, or for patch effects; 

however, the results should still be robust. Though some shrubland species are known to 

be area sensitive, I only surveyed in openings greater than 1 ha in size, the general size 

above which the effects of patch size are generally modest (Rodewald and Vitz 2005, 

Lehnen 2008). Moreover, the shrubland species for which area effects have been most 

commonly reported, such as Yellow-breasted Chats, (Rodewald and Vitz 2005, Lehnen 

and Rodewald 2009), Yellow Warbler (Chandler et al. 2009b), and Eastern Towhee 

(Askins et al. 2007) were not common in the GMNF, and were not focal species. 

Furthermore, microhabitat features appear to play a greater role in determining habitat 
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selection for shrubland species than patch and landscape factors (Hagan and Meehan 

2002, MacFaden and Capen 2002, Askins et al. 2007, Chandler et al. 2009a). Finally, the 

GMNF is extensively forested (USDA Forest Service 2006), and landscape factors are 

less pronounced in areas with extensive mature forest cover (MacFaden and Capen 2002, 

Chandler 2006, Askins et al. 2007).  

 Finally, inferences regarding habitat quality should be tempered with the caveat 

that this study did not measure productivity, nor did it account for site fidelity, which 

may be an important source of variability in bird abundance. Previous studies in managed 

openings and clearcuts have reported overall nest success rates of 52% (King et al. 2009), 

55% (Chandler et al. 2009a), and 43% (Schlossberg and King 2007), indicating that 

shrubland birds scessfully reproduce in managed openings. However, because this study 

assessed habitat quality based solely on abundance, it may overlook important habitat 

associations, because bird abundance does not always directly correlate with fitness or 

site quality (Vickery et al. 1992, Brawn and Robinson 1996, Johnson 2007). For instance, 

if large numbers of young non-breeding individuals tend to aggregate in marginal areas, 

abundance estimates alone can fail to predict habitat quality (Van Horne 1983).  

Moreover, in areas with very little early-successional cover, birds may simply saturate the 

available habitat, to the point that abundance is high in both high and low quality sites. 

Finally, habitat relationships based on abundance estimates alone  may be inaccurate if 

birds return to sites regardless of whether there is breeding habitat available or not.  
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1.5 Management Implications 

  Shrubland birds are a high conservation priority for state and federal agencies, as 

well as private conservation groups. There are numerous options for establishing and 

maintaining early successional habitat.  However, there is also still quite a bit of 

uncertainty regarding the manner in which alternative management options influence 

habitat quality and shrubland bird abundance (Askins 2001, Bulluck and Buehler 2006, 

King et al. 2009), in part because much of the research on shrubland-bird habitat 

associations to date has been conducted primarily in regenerating forest and utility rights-

of-way (Bulluck and Buehler, 2006).  This is the first study to sample systematically over 

an early successional gradient in both silvicultural openings and wildlife openings 

maintained through prescribed burning and mechanical treatment. As such, it offers 

insight into management outcomes across a wider range of treatment types and stand ages 

than has been previously available. 

 Silviculture has been advocated as an important method for creating shrubland 

habitat (Thompson and DeGraaf 2001, DeGraaf and Yamasaki 2003) because unlike 

wildlife openings, silviculture can generate income from the sales of timber. The results 

of this study indicate that both silvicultural and wildlife openings provide habitat for 

shrubland species of conservation concern in the GMNF. Moreover, previous studies 

reported that nest survival did not differ between mechanically treated openings and 

clearcuts in Massachusetts (King et al. 2009), nor between burned or mechanically 

treated openings in New Hampshire (Chandler et al. 2009a). This suggests that all 

opening types on the GMNF are capable of supporting breeding populations of shrubland 

birds. 
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Although nearly all species were present in each treatment type, I found strong 

evidence that wildlife openings supported a greater abundance of birds for all but one 

focal species. The extra economic cost of maintaining wildlife openings may therefore be 

warranted in the GMNF as a supplementary management strategy to silviculture, 

particularly given that silviculture is often unpopular with the public. The results of this 

study provide valuable data for managers regarding what mixture of these treatment 

options can most effectively balance between the costs and benefits of management while 

simultaneously reaching population goals. Moreover, should budgetary constraints limit 

future wildlife opening management, this data from this study can provides managers 

with an estimate of the degree to which they would need to increase silvicultural 

openings in order to continue to support similar population sizes for shrubland species of 

concern.     

Because providing quality habitat for shrubland birds through the maintenance of 

permanent wildlife openings is costly, it is imperative that scarce management dollars are 

used effectively. Moreover, since silviculture will proceed in many managed forests for 

reasons other than wildlife, performing these cuts in a manner that is most beneficial to 

shrubland birds without limiting timber profits is also vital. The results of this study 

provide some guidelines by which managers may be able to improve the habitat value of 

both wildlife openings and silvicultural openings for shrubland birds. For instance, for 

most of the focal species, abundance was negatively related to retained tree cover. This 

suggests that managers can increase the number of shrubland birds that openings can 

support by removing as much overstory tree cover during treatments as possible. 

Although removing more trees may make openings incapable of also supporting forest 
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species during the breeding season, the value of these openings to shrubland birds may be 

more of a critical priority, since early-successional habitat constitutes such a small 

fraction of the landscape.  

Managers may also be able to increase the number of shrubland species supported 

across the managed landscape by ensuring that most openings are allowed a return 

interval of at least 8 years between treatments. It is more expensive to allow a long return 

interval between treatments, because it is more difficult to treat sites after a significant 

cover of woody vegetation has developed (Overcash et al. 1989). However, most of the 

species in this study peaked 4-7 years post-treatment, when shrub cover was relatively 

abundant, and bare ground was still sparse. Indeed, many previous studies have indicated 

that this dense woody cover is essential for many shrubland species (Thompson and 

Capen 1988, Hagan and Meehan 2002, Holmes and Pitt 2007, Schlossberg and King 

2007, Chandler et al. 2009a, Schlossberg et al. 2010). Yet some shrubland species also 

require a dense layer of herbaceous cover (Guzy and Ritchison 1999, Arcese et al. 2002, 

Confer and Pascoe 2003, Holmes and Pitt 2007, Falls and Kopachena 2010, Schlossberg 

et al. 2010) and peak in abundance in the earlier successional stages when this cover is 

more abundant than woody vegetation. Supporting species such as White-throated 

Sparrow, Song Sparrow, and Indigo Bunting requires that some portion of the landscape 

is always in the earliest seres of post-disturbance. Thus, the timing of treatments is an 

important tool through which managers can ensure that the habitat needs of all species are 

met.  

Although the results suggest that managers may not be able to control shrub cover 

through the type of treatment executed per se, they can influence the cover of forb, fern, 
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and grass cover through their choice of treatment type. Habitat with grassy cover can be 

encouraged through mechanical treatment; cover of ferns can be promoted through 

prescribed fire and forb cover through both mechanical treatments and prescribed 

burning.  

The slower a site regenerates, the longer it will provide habitat for shrubland 

species. If managers can control the rate of succession, they can increase the time interval 

between treatments, and potentially reduce management costs. Succession rates are 

known to be linked to the presence of advanced regeneration, because sites with more 

saplings and tree cover can shade out the shrub layer more quickly (Thompson and 

DeGraaf 2001, DeGraaf and Yamasaki 2003). As such, reducing the amount of retained 

basal area during treatment may not only increase the number of birds supported, but may 

and reduce the rate of succession, and increase the time period over which wildlife 

openings and silvicultural openings can support shrubland birds.   

In contrast to what has been observed in previous work, wildlife openings and 

silvicultural openings on the GMNF seemed to be currently regenerating at a similar rate. 

Interactions between treatment type and time since were not supported in the GMNF, and 

understory vegetation height did not vary among treatments. Previous work has suggested 

that some opening types may provide suitable habitat for a longer period of time than 

silvicultural openings (Thompson and DeGraaf 2001, DeGraaf and Yamasaki 2003). For 

instance, Askins (2001) noted that “old field” succession happens more slowly than forest 

regeneration. Habitat composition is known to be heavily influenced by prior land use 

(Motzkin et al. 1996), and sites with a lower site quality index are likely to support 

shrubland birds longer (DeGraaf and Yamasaki 2003, Schlossberg and King 2007). This 
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suggests that managers may be able to reduce the economic cost of managing future 

wildlife openings on the GMNF by considering land use history when siting new wildlife 

openings. For instance, siting opening in areas where succession is likely to proceed more 

slowly, such as xeric sites, frost pockets, areas with shallow soils (DeGraaf and Yamasaki 

2003), or in abandoned beaver meadows, where woody shrub cover has already been 

significantly reduced may increase the time period over which future wildlife openings 

can support birds. This may be a particularly valuable approach in the GMNF, where 

species peaked earlier in wildlife openings relative to what has been observed in 

silvicultural openings (Schlossberg and King 2009). However further study may be 

warranted in order to determine the degree to which site quality influences food 

availability and productivity for shrubland birds. 
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Table 1. Candidate general and generalized linear models with delta AICc of two or less for models representing the effect of 
management regime on habitat composition. Parameters include an intercept, representing the effect of the burn treatment (B0), the 
effect of clearcut (CC) and mechanical treatment (M), time since treatment (TS), and a quadratic term for time since treatment (Q). 
General linear models were used for understory vegetation height, and generalized linear models with a log link for cover variables. 
The estimates with 95% confidence intervals that do not overlap zero are in bold type, and Z scores (Z) comparing the CC and M 
parameter estimates that are statistically significant at an alpha of 0.05 are in bold type. Data are from vegetation surveys conducted in 
point-count plots in burned and mechanically treated wildlife openings and even-aged silvicultural openings on the Green Mountain 
National Forest, Vermont in 2010 and 2011.  

VARIABLE YEAR B0 CC M TS Q Z Ka ΔAICb Wi
c R2 INDEXd 

Bare 2010 -1.32 0.95 0.23 -0.16 0.02 0.46 5 0.00 0.40 0.24 
Ground  -0.74   -0.20 0.02  3 0.86 0.26 0.19 

  -2.27 1.09 0.35 0.15  1.04 4 0.96 0.25 0.21 
            
 2011 -1.09 2.03 0.73 -0.38 0.03 1.59 5 0.00 0.86 0.27 
            

Woody 2010 2.36   0.02   2 0.00 0.40 0.06  
Vegetation  2.24   0.10 0.26  3 1.01 0.24 0.06 

            
 2011 2.52      1 0.00 0.45 0.00 
  2.34   0.06 -0.004  3 1.69 0.19 0.03 
            

Tall 2010 0.92   0.20 -0.01  3 0.00 0.45 0.20 
Woody  1.26   0.09   2 0.38 0.37 0.18 

Vegetation            
 2011 -0.05   0.36 -0.02  3 0.00 0.55 0.27 
  -0.20 0.27 -0.12 0.40 -0.02 1.21 5 0.90 0.35 0.29 
             

Short 2010 2.09   -0.06   2 0.00 0.48 0.12 
Woody   1.92    0.01 -0.004  3 1.11 0.28 0.13 

Vegetation            
 2011 2.53   -0.09   2 0.00 0.46 0.25 
  2.32   -0.01 -0.01  3 0.85 0.30 0.26 
            



 

39 

VARIABLE YEAR B0 CC M TS Q Z Ka ΔAICb Wi
c R2 INDEXd 

Forb 2010 0.93 -0.61 0.41   -2.27 3 0.00 0.58 0.11 
Cover  1.02 -0.56 0.43 -0.02  -2.17 4 1.91 0.22 0.10 

            
 2011 0.38      1 0.00 0.35 0.00 
  0.55 -0.44 -0.14   -0.89 3 0.84 0.23 0.04 
  0.47   -0.01   2 1.83 0.14 0.00 

            
Grass 2010 0.76 -0.01 0.76 -0.13  -1.11 4 0.00 0.45 0.16 
Cover  1.13   -0.14   2 1.01 0.27 0.11 

            
 2011 1.03 -0.06 0.85 -0.09  -2.28 4 0.00 0.67 0.22 
  1.26 -0.08 0.87 -0.18 0.01 -2.37 5 1.63 0.30 0.22 
            

Fern 2010 1.10 -0.38 -0.79   0.88 3 0.00 0.37 0.05 
Cover  0.75      1 0.90 0.24 0.00 

  1.25 -0.36 -0.77 -0.02  0.86 4 1.65 0.16 0.06 
            
 2011 1.13 -0.55 -0.21   -0.93 3 0.00 0.36 0.05 
  -1.71      1 0.36 0.30 0.00 
            

Understory 2010 96.96   5.35   2 0.00 0.52 0.20 
Vegetation  83.48   10.48 -0.34  3 0.65  0.38 0.21 

Height            
 2011 42.20   17.99 -0.78  3 0.00 0.82 0.28 
            

a Number of parameters in model 
b Akaike’s Information Criteria adjusted for small sample size 
c AICc weights, calculated from all fitted models 

d Index from Nagelkerke (1991) 
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Table 2. Mean, median, and standard error of basal area values for retained deciduous 
(D) and coniferous (C) trees. Median values were compared using non-parametric Mann-
Whitney tests, and in each row of the table, median values with a different superscript are 
statistically different at an α of 0.05. Data are from vegetation surveys conducted in 
point-count plots in burned and mechanically treated wildlife openings and even-aged 
silvicultural openings on the Green Mountain National Forest, Vermont in 2010 and 
2011. 

  

  Burned  
Wildlife Openings 

Silvicultural  
Openings  

Mechanically Treated 
Wildlife Openings 

Basal 
Area Year Mean Median SE Mean Median SE Mean Median SE 

D 
2010 2.91 0.82b 0.85 6.38 4.24a 0.94 3.77 2.66b 0.70 
2011 2.45 0.75c 0.68 6.41 5.24a 0.93 4.03 3.21b 0.76 

           

C 2010 0.48 0.00b 0.21 1.53 0.38a 0.25 1.17 0.06 0.38 
2011 0.50 0.00b 0.20 1.75 0.38a 0.60 1.25 0.17 0.49 
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Table 3. Species counts for all males detected within point-count survey plots in wildlife 
openings and even-aged silvicultural openings on the Green Mountain National Forest, 
Vermont in 2010 and 2011.Counts for Cedar Waxwings include both males and females. 
Species in bold type are shrubland birds, as designated by Schlossberg and King (2007). 

COMMON NAME CODE SCIENTIFIC NAME 2010 2011 
Alder Flycatcher ALFL Empidonax alnorum 87 86 
American Crow AMCR Corvus brachyrhynchos 0 4 

American Goldfinch AMGO Spinus tristis 27 44 
American Redstart AMRE Setophaga ruticilla 60 24 
American Robin AMRO Turdus migratorius 20 30 
Baltimore Oriole BAOR Icterus galbula 1 1 

Black-and-white Warbler BAWW Mniotilta varia 21 30 
Black-capped Chickadee BCCH Poecile atricapillus 54 35 
Blue-gray Gnatcatcher BGGN Polioptila caerulea 1 1 

Brown-headed Cowbird BHCO Molothrus ater 3 2 
Blue-headed Vireo BHVI Vireo solitarius 1 1 

Blackburnian Warbler BLBW Setophaga fusca 95 70 
Blue Jay BLJA Cyanocitta cristata 26 19 

Brown Creeper BRCR Certhia americana 3 6 
Black-throated Blue Warbler BTBW Setophaga caerulescens 47 39 

Black-throated Green Warbler BTNW Setophaga virens 17 32 
Canada Warbler CAWA Cardellina canadensis 33 18 
Cedar Waxwing CEDW Bombycilla cedrorum 84 143 
Cerulean Warbler CERW Setophaga cerulea 1 0 
Chipping Sparrow CHSP Spizella passerina 12 4 
Common Raven CORA Corvus corax 0 1 

Common Yellowthroat COYE Geothlypis trichas 343 313 
Chestnut-sided Warbler CSWA Setophaga pensylvanica 379 508 

Dark-eyed Junco DEJU Junco hyemalis 38 31 
Downy Woodpecker DOWO Picoides pubescens 4 3 

Eastern Kingbird EAKI Tyrannus tyrannus 0 3 
Eastern Phoebe EAPH Sayornis phoebe 1 1 

Eastern Towhee EATO Pipilo erythrophthalmus 15 16 
Eastern Wood Pewee EAWP Contopus virens 4 5 

Field Sparrow FISP Spizella pusilla 1 0 
Great Crested Flycatcher GCFL Myiarchus crinitus 4 8 
Golden-crowned Kinglet GCKI Regulus satrapa 5 1 

Gray Catbird GRCA Dumetella carolinensis 26 16 
Hairy Woodpecker HAWO Picoides villosus 12 5 

Hermit Thrush HETH Catharus guttatus 1 5 
House Wren HOWR Troglodytes aedon 0 1 

Indigo Bunting INBU Passerina cyanea 73 119 
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COMMON NAME CODE SCIENTIFIC NAME 2010 2011 
Least Flycatcher LEFL Empidonax minimus 14 23 

Magnolia Warbler MAWA Setophaga magnolia 30 13 
Mourning Dove MODO Zenaida macroura 1 1 

Mourning Warbler MOWA Geothlypis philadelphia 65 51 
Nashville Warbler NAWA Oreothlypis ruficapilla 26 17 
Northern Cardinal NOCA Cardinalis cardinalis 1 1 

Northern Flycatcher NOFL Colaptes auratus 5 4 
Northern Mockingbird NOMO Mimus polyglottos 1 0 

Northern Parula NOPA Setophaga americana 1 2 
Northern Waterthrush NOWA Parkesia noveboracensis 4 1 

Ovenbird OVEN Seiurus aurocapillus 13 46 
Pine Warbler PIWA Setophaga pinus 2 4 

Pileated Woodpecker PIWO Dryocopus pileatus 4 1 
Purple Finch PUFI Carpodacus purpureus 1 1 

Red-breasted Grosbeak RBGR Pheucticus ludovicianus 21 22 
Ruby-crowned Kinglet RCKI Regulus calendula 0 16 

Red-eyed Vireo REVI Vireo olivaceus 91 106 
Ruby-throated Hummingbird RTHU Archilochus colubris 10 18 

Ruffed Grouse RUGR Bonasa umbellus 11 5 
Red-winged Blackbird RWBL Agelaius phoeniceus 4 3 

Scarlet Tanager SCTA Piranga olivacea 3 3 
Song Sparrow SOSP Melospiza melodia 40 42 

Swainson’s Thrush SWTH Catharus ustulatus 5 10 
Tree Swallow TRSW Tachycineta bicolor 3 11 

Tufted Titmouse TUTI Baeolophus bicolor 0 1 
Veery VEER Catharus fuscescens 10 8 

Warbling Vireo WAVI Vireo gilvus 1 2 
White-breasted Nuthatch WBNU Sitta carolinensis 2 3 

Wild Turkey WITU Meleagris gallopavo 0 1 
Winter Wren WIWR Troglodytes troglodytes 23 15 
Wood Thrush WOTH Hylocichla mustelina 3 3 

White-throated Sparrow WTSP Zonotrichia albicollis 123 120 
Yellow-bellied Sapsucker YBSA Sphyrapicus varius 6 2 

Yellow Warbler YEWA Setophaga petechia 2 3 
Yellow-rumped Warbler YRWA Setophaga coronata 8 6 
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Table 4. Management variables in N-mixture models of bird abundance with delta AICc values of two or less. Management variables 
include an intercept, representing the effect of the burn treatment (B0), effects for clearcut (CC) and mechanical treatment (M), time 
since treatment (TS), a quadratic term for time since treatment (Q), and basal area of retained deciduous (DT) and coniferous trees 
(CT). The estimates with 95% confidence intervals that do not overlap zero are in bold type. Z scores (Z) for comparisons of the CC 
and M parameter estimates that are statistically significant at an alpha of 0.05 are in bold type. Data are from point-count surveys 
conducted in burned and mechanically treated wildlife openings and even-aged silvicultural openings on the Green Mountain National 
Forest, Vermont in 2010 and 2011.   

SPECIESa 2010 B0 CC M TS Q DT CT Z Kb AICc ΔAICc 
c Wi d R2  INDEXe 

ALFL 2010 0.94 -1.62 -0.24 -0.51 -0.71 -0.22 -0.36 -2.24 11 329.89 0.00 0.51 0.56 
  0.86 -1.74 -0.20 -0.55 -0.65  -0.43 -2.51 10 330.82 0.93 0.32 0.55 
               

ALFL 2011 0.18   -0.44 -0.72 -0.32 -0.45  11 338.17 0.00 0.61 0.39 
               

CEDW 2010 1.88 -1.07 0.19 -0.69 -0.64   -2.21 11 383.19 0.00 0.31 0.38 
  1.83 -0.97 0.21 -0.64 -0.65 -0.16  -2.05 12 384.20 1.01 0.18 0.39 
  1.93 -1.14 0.09 -0.67 -0.66  0.13 -2.10 12 384.53 1.34 0.16 0.38 
  1.90 -1.03 0.08 -0.59 -0.68 -0.23 0.20 -1.89 13 384.82 1.63 0.13 0.39 
               

CEDW 2011 2.19 -0.71 -0.45 -0.41 -0.24   -0.54 13 552.41 0.00 0.13 0.45 
  1.86   -0.41 -0.25    11 552.96 0.55 0.10 0.42 
  2.02 -0.73 -0.44 -0.26    -0.59 12 553.54 1.13 0.07 0.43 
  2.09 -0.71 -0.44     -0.56 11 553.57 1.16 0.07 0.42 
  2.15 -0.71 -0.42 -0.36 -0.23 -0.13  -0.60 14 553.58 1.17 0.07 0.45 
  2.02 -0.72 -0.39   -0.20  -0.67 12 553.61 1.20 0.07 0.43 
  1.83   -0.36 -0.24 -0.15   12 553.96 1.55 0.06 0.43 
  1.68   -0.26     10 554.15 1.74 0.05 0.40 
  1.98 -0.73 -0.40 -0.21  -0.16  -0.66 13 554.29 1.88 0.05 0.44 
  2.17 -0.70 -0.44 -0.41 -0.24  -0.04 -0.54 14 554.35 1.94 0.05 0.45 
               

COYE 2010 1.63 -0.89 -0.12 -0.32 -0.36 -0.19  -2.81 10 718.83 0.00 0.64 0.60 
  1.62 -0.88 -0.11 -0.32 -0.35 -0.18 -0.04 -2.80 11 720.64 1.80 0.26 0.60 
               

COYE 2011 1.76 -0.53 0.02 -0.26 -0.28 -0.23  -2.36 13 717.70 0.00 0.44 0.60 
  1.77 -0.49 0.04 -0.28 -0.28 -0.19 -0.11 -2.33 14 717.75 0.06 0.43 0.61 
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SPECIES 2010 B0 CC M TS Q DT CT Z Kb AICc ΔAICc 
c Wi d R2  INDEXe 

CSWA 2010 1.58 -0.43 -0.15 -0.15 -0.38 -0.18 -0.16 -1.13 11 749.31 0.00 0.46 0.66 
   1.41   -0.18 -0.41 -0.22 -0.18  9 750.56 1.25 0.24 0.64 
  1.63 -0.48 -0.20 -0.15 -0.40 -0.22  -1.12 10 751.21 1.90 0.18 0.65 
               

CSWA 2011 1.75 -0.48 0.14 -0.23 -0.35 -0.21  -2.91 10 820.30 0.00 0.63 0.56 
  1.74 -0.46 0.16 -0.24 -0.35 -0.19 -0.06 -2.89 11 821.49 1.19 0.35 0.56 
               

INBU 2010 0.78 -1.41 0.63 -0.61 -0.49  -0.47 -2.94 12 281.66 0.00 0.49 0.66 
  0.75 -1.32 0.64 -0.55 -0.49 -0.12 -0.45 -5.34 13 282.95 1.29 0.26 0.66 
               

INBU 2011 0.64 -1.00  0.01 -0.52 -0.29  -0.28 -2.23 13 387.42 0.00 0.34 0.58 
  0.62 -1.00 -0.02 -0.47 -0.28 -0.12 -0.23 -2.17 14 388.61 1.19 0.19 0.58 
  0.66 -1.07 -0.08 -0.43 -0.27 -0.21  -2.19 13 389.09 1.67 0.15 0.57 
               

MOWA 2010 0.42   -0.34 -0.25    6 327.69 0.00 0.18 0.09 
  0.17   -0.18     5 328.16 0.47 0.14 0.07 
  0.25        2 328.52 0.83 0.12 0.00 
  0.38   -0.34 -0.23  -0.12  4 328.98 1.29 0.09 0.10 
  0.15   -0.19   -0.15  6 329.09 1.40 0.09 0.08 
  0.42   -0.32 -0.25 -0.10   7 329.12 1.43 0.09 0.10 
  0.17   -0.15  -0.10   6 329.65 1.97 0.07 0.07 
               

MOWA 2011 -0.01 0.89 0.13 -0.58 -1.03   1.18 10 246.18 0.00 0.34 0.38 
  -0.05 0.94 0.17 -0.58 -1.02  -0.11 1.18 11 247.73 1.55 0.16 0.39 
  0.34   -0.55 -0.91    8 247.96 1.78 0.14 0.34 
  0.00 0.87 0.12 -0.60 -1.04 0.06  1.16 11 248.06 1.88 0.13 0.38 
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SPECIES 2010 B0 CC M TS Q DT CT Z Kb AICc ΔAICc 
c Wi d R2  INDEXe 

SOSP  2010 -0.80   -0.80 -0.71 -0.42 -0.51  8 172.59 0.00 0.10 0.21 
  -0.68 -1.47 0.04    -0.63 -1.35 7 172.65 0.06 0.09 0.19 
  -0.73   -0.81 -0.64  -0.62  7 172.74 0.16 0.09 0.19 
  -0.71   -0.83 -0.77 -0.55   7 172.90 0.32 0.08 0.19 
  -0.57 -1.32 0.08 -0.78 -0.59  -0.59 -1.28 9 173.57 0.99 0.06 0.22 
  -0.91 -1.23 0.24   -0.32 -0.56 -1.26 8 173.59 1.00 0.06 0.20 
  -1.11   -0.29   -0.69  6 173.71 1.12 0.06 0.16 
  -0.89 -1.46 0.12 -0.33   -0.63 -1.39 8 173.82 1.23 0.05 0.20 
  -1.23   -0.27  -0.39 -0.58  7 174.05 1.46 0.05 0.18 
  -0.74 -1.10 0.28 -0.80 -0.66 -0.37 -0.52 -1.19 10 174.11 1.52 0.05 0.24 
  -0.46 -1.74 -0.17     -1.42 6 174.12 1.53 0.04 0.16 
  -0.80 -1.35 0.14   -0.44  -1.27 7 174.12 1.54 0.04 0.18 
  -0.60 -1.15 0.18 -0.81 -0.70 -0.47  -1.16 9 174.43 1.85 0.04 0.21 
               

SOSP 2011 -0.58   -1.21 -1.05  -1.73  7 171.20 0.00 0.54 0.29 
  -0.61   -1.10 -1.07 -0.23 -1.65  8 172.62 1.42 0.26 0.29 
               

WTSP 2010 0.74 -0.76 -0.24 -0.54  -0.19  -1.36 9 447.12 0.00 0.25 0.49 
  0.78 -0.78 -0.27 -0.53  -0.24 0.12 -1.32 10 448.05 0.93 0.16 0.49 
  0.81 -0.94 -0.29 -0.59    -1.74 8 448.27 1.15 0.14 0.47 
  0.75 -0.73 -0.23 -0.58 -0.04 -0.20  -1.26 10 449.04 1.92 0.10 0.49 
               

WTSP 2011 0.83 -0.65 -0.57 -0.75 -0.18   -0.20 11 431.90 0.00 0.20 0.49 
  0.82 -0.59 -0.55 -0.71 -0.17 -0.13  -0.10 12 432.78 0.88 0.13 0.49 
  0.70 -0.64 -0.64 -0.54    -0.01 10 432.98 1.08 0.12 0.47 
  0.87 -0.60 -0.54 -0.67 -0.18 -0.21 0.15 -0.13 13 433.28 1.38 0.10 0.50 
  0.85 -0.67 -0.58 -0.74 -0.18  0.07 -0.24 12 433.55 1.65 0.09 0.49 
  0.69 -0.57 -0.61 -0.51  -0.14  0.09 11 433.68 1.78 0.08 0.48 

a Common and scientific names in Table 3 
b Number of parameters in model, including two intercepts  
c Akaike’s Information Criteria adjusted for small sample size 
d AICc weights, calculated from all fitted models  
e Index from Nagelkerke (1991)  
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Table 5. Estimates of mean detectability (p) and parameter estimates for detection covariates in N-mixture models of bird abundance 
with delta AICc values of two or less. Detection variables include an intercept (B0), date (D), observers (OBS1, OBS 2, OBS3, and 
OBS4), understory vegetation height (V), a quadratic term for date (D2), wind (W), and time (T). Parameters in bold type have 95% 
confidence intervals that do not overlap zero. Mean detectability was calculated for each model by using the model to predict 
detectability during all survey events (288 in 2010, 279 in 2011), and subsequently taking the mean of the predicted values for each 
model. Data are from point-count surveys conducted in burned and mechanically treated wildlife openings and even-aged silvicultural 
openings on the Green Mountain National Forest, Vermont in 2010 and 2011.  

             
SPECIES a YEAR p B0 D OBS1 OBS2 OBS3 OBS4 V D2 W T 

ALFL 2010 0.27 -1.87 -0.49 0.87 1.00       
  0.27 -1.76 -0.47 0.88 1.06       
             

ALFL 2011 0.34 -1.12  0.80  0.47 -0.43     
             

CEDW 2010 0.09 -2.87 0.78 0.74 0.79    -0.24   
  0.09 -2.86 0.77 0.75 0.78    -0.25   
  0.09 -2.86 0.79 0.73 0.80    -0.23   
  0.09 -2.84 0.79 0.74 0.78    -0.24   
             

CEDW 2011 0.09 -2.11 -0.40 -0.01  -0.70 1.02 -0.46  -0.36  
  0.09 -2.13 -0.41 0.03  -0.67 1.06 -0.52  -0.37  
  0.09 -2.17 -0.40 0.01  -0.66 1.03 -0.44  -0.35  
  0.09 -2.24 -0.38 0.04  -0.64 1.05 -0.61  -0.36  
  0.09 -2.09 -0.39 -0.01  -0.71 0.99 -0.46  -0.37  
  0.10 -2.19 -0.36 0.02  -0.66 1.00 -0.57  -0.37  
  0.09 -2.12 -0.39 0.02  -0.67 1.02 -0.53  -0.38  
  0.09 -2.19 -0.41 0.04  -0.62 1.05 -0.50  -0.36  
  0.09 -2.14 -0.38 0.00  -0.67 0.99 -0.44  -0.36  
  0.09 -2.10 -0.40 -0.01  -0.71 1.02 -0.46  -0.37  
             

COYE 2010 0.39 -0.81 0.18 0.53 0.51       
  0.39 -0.82 0.18 0.53 0.51       
             

COYE 2011 0.28 -1.26 -0.11 0.65  0.04 0.31 -0.38 -0.12   
  0.27 -1.30 -0.12 0.62  0.04 0.29 -0.38 -0.11   
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SPECIES a YEAR  B0 D OBS1 OBS2 OBS3 OBS4 V D2 W T 
CSWA 2010 0.42 -0.81  0.90 1.06     -0.17  

  0.43 -0.78  0.92 1.05     -0.18  
  0.43 -0.79  0.90 1.07     -0.17  
             

CSWA 2011 0.44 -0.64  0.58  0.45 0.37     
  0.44 -0.64  0.57  0.44 0.36     
             

INBU 2010 0.15 -3.13 0.32 1.19 0.92   -1.41   0.57 
  0.15 -3.14 0.30 1.19 0.90   -1.43   0.57 
             

INBU 2011 0.30 -0.77 -0.38 0.37  -0.60 -0.49 -1.08 -0.22   
  0.31 -0.71 -0.37 0.36  -0.61 -0.53 -1.08 -0.23   
  0.31 -0.70 -0.36 0.39  -0.59 -0.51 -1.07 -0.25   
             

MOWA 2010 0.18 -2.01  0.64 0.76       
  0.19 -1.97  0.63 0.76       
  0.18 -1.54  0.63 0.76       
  0.19 -1.99  0.64 0.76       
  0.19 -1.96  0.62 0.77       
  0.18 -2.01  0.64 0.75       
  0.19 -1.97  0.63 0.76       
             

MOWA 2011 0.24 -0.59  -0.11  -2.06 -1.68 -0.46    
  0.24 -0.58  -0.14  -2.08 -1.72 -0.45    
  0.25 -0.62  -0.08  -2.09 -1.65 -0.38    
  0.24 -0.58  -0.11  -2.07 -1.66 -0.46    
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SPECIES a YEAR p B0 D OBS1 OBS2 OBS3 OBS4 V D2 W T 
SOSP 2010 0.37 -0.80      -1.56    

  0.34 -1.05      -1.90    
  0.36 -0.85      -1.65    
  0.38 -0.71      -1.51    
  0.36 -0.82      -1.61    
  0.35 -1.01      -1.87    
  0.35 -0.95      -1.76    
  0.36 -0.90      -1.71    
  0.36 -0.87      -1.67    
  0.36 -0.81      -1.58    
  0.36 -0.90      -1.78    
  0.36 -0.88      -1.77    
  0.38 -0.72      -1.52    
             

SOSP 2011 0.17 -1.74 -0.74         
  0.17 -1.70 -0.66         
             

WTSP 2010 0.22 -2.11  0.84 1.06     0.13  
  0.22 -2.14  0.85 1.05     0.13  
  0.23 -2.12  0.86 1.11     0.14  
  0.22 -2.11  0.85 1.06     0.13  
             

WTSP 2011 0.25 -1.96 0.25 1.06  0.54 0.87   0.18  
  0.24 -1.99 0.26 1.05  0.54 0.82   0.18  
  0.25 -1.94 0.26 1.06  0.58 0.90   0.19  
  0.23 -2.04 0.27 1.05  0.54 0.79   0.16  
  0.24 -1.97 0.25 1.06  0.54 0.87   0.18  
  0.24 -1.97 0.27 1.05  0.57 0.84   0.18  
             

a Common and scientific names in Table 3



 

49 

Table 6. Occupancy (% of points occupied), mean abundance (detections/50 m radius 
count), and detectability-adjusted abundance (𝛌) for shrubland birds in burned and 
mechanically treated wildlife openings and even-aged silvicultural openings on the Green 
Mountain National Forest, Vermont, in 2010 and 2011. 

 
SPECIESa YEAR OCC Abund SE 𝛌b SE 

ALFL 2010 0.39 0.30 0.04 1.23 0.12 
CEDW 2010 0.22 0.29 0.05 3.61 0.25 
COYE 2010 0.77 1.19 0.07 3.05 0.18 
CSWA 2010 0.82 1.32 0.08 3.11 0.16 
INBU 2010 0.32 0.25 0.04 1.76 0.16 

MOWA 2010 0.43 0.23 0.03 1.22 0.02 
SOSP 2010 0.15 0.14 0.03 0.40 0.03 
WTSP 2010 0.55 0.43 0.05 1.92 0.15 

       
ALFL 2011 0.34 0.31 0.04 0.88 0.08 
CEDW 2011 0.49 0.51 0.07 5.15 0.19 
COYE 2011 0.76 1.12 0.07 4.23 0.21 
CSWA 2011 0.86 1.81 0.09 4.10 0.21 
INBU 2011 0.45 0.43 0.04 1.30 0.08 

MOWA 2011 0.32 0.18 0.03 0.76 0.05 
SOSP 2011 0.16 0.15 0.03 0.88 0.12 
WTSP 2011 0.48 0.43 0.05 1.69 0.12 

a Common and scientific names in Table 3 
b Estimated abundance/50 m radius circle based on N-mixture models 
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Table 7. Occupancy (% of points occupied), mean abundance (detections/50 m radius count), and detectability-adjusted abundance 
(𝛌) for shrubland birds partitioned by treatment type. Data are from burned and mechanically treated wildlife openings and even-aged 
silvicultural openings on the Green Mountain National Forest, Vermont in 2010 and 2011.   

       
BURN    

CLEARCUT    
MECHANICAL 

SPECIESa YR  Occ Abund SE 𝛌b SE  Occ Abund SE 𝛌b SE  Occ Abund SE 𝛌b SE 

ALFL 2010  0.67 0.52 0.08 2.22 0.19  0.09 0.05 0.02 0.24 0.03  0.45 0.38 0.07 1.23 0.19 
CEDW 2010  0.37 0.43 0.09 4.83 0.30  0.06 0.12 0.05 1.39 0.16  0.26 0.34 0.09 4.95 0.45 
COYE 2010  1.00 1.78 0.13 4.62 0.22  0.46 0.54 0.1 1.30 0.09  0.9 1.35 0.12 3.52 0.25 
CSWA 2010  1.00 1.83 0.15 4.22 0.22  0.66 0.83 0.11 2.06 0.16  0.84 1.37 0.12 3.22 0.27 
INBU 2010  0.50 0.4 0.08 2.23 0.16  0.06 0.05 0.03 0.31 0.04  0.45 0.34 0.07 2.94 0.32 

MOWA 2010  0.43 0.23 0.05 1.33 0.04  0.43 0.22 0.04 1.14 0.04  0.42 0.23 0.05 1.22 0.04 
SOSP 2010  0.23 0.28 0.07 0.58 0.05  0.03 0.04 0.02 0.18 0.02  0.19 0.12 0.04 0.48 0.05 
WTSP 2010  0.57 0.66 0.11 2.78 0.27  0.43 0.24 0.05 1.11 0.14  0.68 0.42 0.07 1.97 0.27 

                         
ALFL 2011  0.44 0.43 0.08 1.07 0.12  0.18 0.20 0.06 0.69 0.12  0.43 0.3 0.06 0.90 0.15 
CEDW 2011  0.59 0.73 0.14 7.07 0.29  0.36 0.30 0.12 4.11 0.20  0.54 0.51 0.12 5.18 0.20 
COYE 2011  0.84 1.38 0.13 5.22 0.33  0.58 0.71 0.11 2.69 0.21  0.89 1.32 0.13 4.91 0.36 
CSWA 2011  0.91 2.13 0.14 4.78 0.29  0.73 1.11 0.14 2.50 0.19  0.96 2.29 0.15 5.20 0.40 
INBU 2011  0.69 0.57 0.08 1.82 0.12  0.15 0.15 0.05 0.56 0.05  0.54 0.58 0.09 1.57 0.11 

MOWA 2011  0.22 0.15 0.04 0.60 0.06  0.45 0.24 0.05 0.94 0.12  0.29 0.15 0.05 0.72 0.08 
SOSP 2011  0.19 0.18 0.06 1.10 0.21  0.09 0.14 0.06 0.69 0.20  0.21 0.13 0.04 0.86 0.21 
WTSP 2011  0.59 0.65 0.10 2.33 0.24  0.39 0.33 0.07 1.27 0.14  0.46 0.3 0.07 1.44 0.17 

a Common and scientific names in Table 3 
b Estimated abundance/50 m radius circle based on N-mixture models 
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Figure 1. Maps of northern and southern survey sites in the Green Mountain National 
Forest (GMNF) Study Area. Maps include all sites surveyed in 2010 and 2011.  
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Figure 2. Box plots comparing basal area of retained coniferous and deciduous trees in 
even-aged silvicultural openings (CC), and burned (BURN) and mechanically treated 
wildlife openings (MECH) on the Green Mountain National Forest, Vermont, 2010 and 
2011. 
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Figure 3. Model-averaged predictions from models relating habitat response variables 
and management regime. Strongly supported relationships include a treatment effect for 
Bare Ground (A), (B), Forb Cover (I), Grass Cover (K), (L), and Fern Cover (M), (N), 
and a time since treatment effect for Bare Ground (A), (B), Woody Vegetation (C), Tall 
Woody Vegetation (E), (F), Short Woody Vegetation (G), (H),  Grass Cover (K), (L), 
Fern Cover (M), and Understory Vegetation Height (O), (P). Data are from vegetation 
surveys conducted in point-count plots in burned and mechanically wildlife openings and 
even-aged silvicultural openings on the Green Mountain National Forest, Vermont in 
2010 and 2011. 
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Figure 4. Model-averaged predictions for supported relationships between bird 
abundance and management variables. Strongly supported treatment effects are 
represented for Alder Flycatchers (A), Cedar Waxwings (C), (D), Common 
Yellowthroats (E), (F), Chestnut-sided Warblers, Indigo Buntings (I), (J), Mourning 
Warblers (K), Song Sparrows (L), (M), and White-throated Sparrows (N), (O). Strongly 
supported time since treatment effects are represented for Alder Flycatchers (A), (B), 
Cedar Waxwings (C), (D), Common Yellowthroats (E), (F), Chestnut-sided Warblers, 
Indigo Buntings (I), (J), Mourning Warblers (K), Song Sparrows (L), (M), and White-
throated Sparrows (N), (O). Data are from bird surveys in even-aged silvicultural 
openings and burned and mechanically treated wildlife openings on the Green Mountain 
National Forest in Vermont in 2010 and 2011. 
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Figure 5. Sample-based species accumulation curves comparing richness of shrubland 
birds observed in burned and mechanically treated wildlife openings (top), burned 
wildlife openings and even-aged silvicultural openings (middle), and mechanically 
treated wildlife openings and even-aged silvicultural openings (bottom). Data are from 
point-count surveys in even-aged silvicultural openings, and burned and mechanically 
treated wildlife openings in the Green Mountain National Forest of Vermont in 2010 and 
2011.  
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Figure 6. Sample-based species accumulation curves for all species observed in openings 
on the Green Mountain National Forest in 2010 (top) and 2011 (bottom). Data are from 
point-count surveys in even-aged silvicultural openings, and burned and mechanically 
treated wildlife openings in the Green Mountain National Forest of Vermont in 2010 and 
2011. 
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