Jun 21st, 3:00 PM - 3:15 PM

Fish Passage Studies II: Size-Related Turbine Passage Survival and Injury of Lake Sturgeon at the Shawano Project, Wolf River, Wisconsin

Joanne Phipps
Normandeau Associates

Paul Heisey
Normandeau Associates

Chris Avalos
Normandeau Associates

Ryan Koenigs
Wisconsin DNR

Follow this and additional works at: http://scholarworks.umass.edu/fishpassage_conference

Phipps, Joanne; Heisey, Paul; Avalos, Chris; and Koenigs, Ryan, "Fish Passage Studies II: Size-Related Turbine Passage Survival and Injury of Lake Sturgeon at the Shawano Project, Wolf River, Wisconsin" (2016). *International Conference on Engineering and Ecohydrology for Fish Passage*. 20.
http://scholarworks.umass.edu/fishpassage_conference/2016/June21/20

This Event is brought to you for free and open access by the The Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
SIZE - RELATED TURBINE PASSAGE SURVIVAL AND INJURY OF LAKE STURGEON AT THE SHAWANO PROJECT, WOLF RIVER, WISCONSIN

JOANNE PHIPPS*, PAUL HEISEY, AND CHRIS AVALOS
NORMANDEAU ASSOCIATES
AND RYAN KOENIGS
WISCONSIN DNR
Contents

• Background/Objectives
• Test Conditions
• Methods
• Results
• Conclusions
• Questions
• Shawano Paper Mill Dam in Wisconsin is located on the Wolf River east of Green Bay in Shawano County.

• The city, county, and Shawano Lake are all named for Menominee Chief Sawanoh, whose tribal people lived, farmed, and fished the lake.

• Shawano Paper Mill Dam was built in 1892 to regulate the water levels in Shawano Lake.

• The Shawano Paper Mill Dam marks the end of the line for Lake Sturgeon and other migratory fish migrating from Lake Winnebago Pool up the Wolf River.
Background (continued)

- A natural barrier, Keshena Falls is located 11 miles upstream from the Shawano Paper Mill Dam.
- Keshena Falls was a historical spawning area.
- Sturgeon return every spring to the Shawano Paper Mill Dam to spawn in mass numbers; an environmental spectacle which attracts locals and tourists alike.
- Efforts are underway to return adult sturgeon to Keshena Falls historic spawning area.
- Progeny of these fish will have to pass the Shawano Project.
The objectives were to:

• Estimate 48h survival and injury rates (within ±5%, 90% of the time) of fingerling and yearling sized Lake Sturgeon passing through the turbines at Shawano Paper Mill Dam.

• Determine injury rates and types attributed to turbine passage.
Test Conditions

Technique - All fish tagged with HI-Z tags
Fish source – School of Freshwater Sciences at the University of Wisconsin Milwaukee
Specimens – Juvenile (two size groups) Lake Sturgeon

Fish length (TL in mm)
- Fingerlings range from 180 to 224, average 199
- Yearling sized range from 240 to 335, average 260
- Control fingerlings range from 180 to 220, average 197
- Control yearling sized range from 240 to 290, average 251

Sample size
- Fingerling: N = 150
- Yearling sized: N = 160
- Control: N = 87

Water temperature – 9.0 to 9.5°C (48.2 to 49.1°F)
Turbine Characteristics and Test conditions

- Turbine type – 42 in Leffel-Z (Vertical Francis type)
- Maximum discharge 265 cfs (test at 260 cfs)
- Rotation 100 rpm
- Runner diameter size - 42 to 74 in (small unit)
- Number of buckets 18
- Number of wicket gates 20
- Width between wicket gates 7.4 in
- Operating head 10.5 ft
- Normal Headwater elevation 802.5 ft
- Normal Tailwater elevation 792 ft
Methods
Release Locations

Control release hose

Treatment release pipe going through trash racks

Treatment release pipe

Treatment release hose

Treatment release hose
Release Locations (continued)

Turbine
Release near the middle of turbine, approx. 1/2 ft upstream of wicket gates.

Control
The control fish groups were released downstream of Unit 2 turbine.
HI-Z Tagging Sequence

- The HI-Z tag-recapture technique has been used to estimate survival/injury of more than 22 species of fish; this was the first study on Sturgeon.
Fish Tracking and Recapture

- Fish buoyed to surface
- Netting fish
- Fish holding tank
- Fish held for 48h
Statistical Analysis

- Passage survival and injury rates were estimated relative to controls.
- Chi-square tests performed to determine homogeneity (P=0.05) between daily trials with respect to recapture frequencies of dead, alive, and unknown fish.
- Calculated malady-free rates (fish without any passage related injuries or loss of equilibrium).
Results: Recapture Rates

• Recapture rates were 88.7 and 90.6% for the fingerling and yearling sized fish, respectively.

• Recapture rate for the control groups was 98.0% and 95.0% for the fingerlings and yearling sized, respectively.

• HI-Z tags only were recovered on 11 (7%) and 14 (9%) of the fingerling and yearling sized fish, respectively. Fish assigned dead.

• The average retrieval time for the treatment fish ranged from 8 to 10 minutes. Control retrieval time averaged 4 minutes.
Survival Results

- No fish recovered dead
- Relatively high number of tags-only recaptured: fingerling 7.3%, yearling sized 8.8%, (worst case scenario assigned dead)
- Some fish trapped temporarily in underwater structures; others not recaptured assigned alive, fingerling 4.0%, yearling sized 0.6%, controls 2 and 5%
Injuries

- Only one yearling recaptured with injuries.
- Injuries consisted of damaged gill, hemorrhaged left eye, and hemorrhaged brain;
- This fish died in holding, injuries were major and mechanical;
- Recapture of only one injured fish suggests that the actual survival estimates are likely higher than estimated herein;
- Minimal injuries may have been due to Sturgeon being cartilaginous and covered in scutes and a low Project head (10.5ft).
Comparison to Other Studies
With Similar sized (177 – 213 mm) Juvenile Salmonids

<table>
<thead>
<tr>
<th></th>
<th>Box Canyon</th>
<th>Albeni Falls</th>
<th>Foster</th>
<th>Shawano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish Released</td>
<td>400</td>
<td>209</td>
<td>1238</td>
<td>150</td>
</tr>
<tr>
<td>Fish Recaptured</td>
<td>99%</td>
<td>98%</td>
<td>96%</td>
<td>89%</td>
</tr>
<tr>
<td>HI-Z tags recaptured only (no fish)</td>
<td>1%</td>
<td>1%</td>
<td>2%</td>
<td>7%</td>
</tr>
<tr>
<td>Fish recaptured missing a HI-Z tag</td>
<td>5%</td>
<td>4%</td>
<td>11%</td>
<td>9%</td>
</tr>
<tr>
<td>Fish recaptured with injuries and missing a HI-Z tag</td>
<td>2%</td>
<td>0%</td>
<td>6%</td>
<td>0%</td>
</tr>
<tr>
<td>Fish recaptured with injuries and all HI-Z tags present</td>
<td>2%</td>
<td>2%</td>
<td>15%</td>
<td>0%</td>
</tr>
</tbody>
</table>

* Percent based on recaptured fish; not total released
Comparison to Other Studies (continued)

- Physical recapture of fish typically higher 96-99% than that at Shawano (89 and 91%), which was due primarily to the lower recapture of tags only 1-2% versus 7 and 9% at Shawano.
- Fish recaptured missing a tag are generally lower 4-11% than at Shawano (9 and 16%).
- Typically more of these fish missing a tag are injured (0-6%) than that at Shawano (0 and <1%).
- Typically more fish with all tags intact are injured (2-15%) than that at Shawano (0%).
- The data on missing and detached tags indicate that the Sturgeon survival estimates are likely higher.
Conclusions

• Survival estimate (48h) of fingerling and yearling passed fish were 92.7 and 90.6%, respectively.

• Malady-free estimates were 100.0 and 99.9% for the fingerling and yearling sized passed fish, respectively.

• Survival was not significantly different between the fingerling and yearling sized fish; malady rates were not significantly different.
Conclusions (continued)

• Desired precision ($\varepsilon \leq \pm 5\%$); 90% of the time was met for all estimates.

• Only one fish was injured and dead at 48h.

• The recapture of only one injured fish and absence of injuries to recaptured fish missing a tag indicate the actual survival rates are likely higher.
Acknowledgements/Questions

WDNR Staff:
Ryan Koenigs
Adam Nickel
Jason Kohls
Bob Marin
Bob Hoodie
Tom Schlavensky
Ryan Zernzach

Normandeau Staff:
Paul Heisey
Joanne Phipps
Chris Avalos
Sidney Graver
Steve Kauffman
Scott Copenheaver

Shawano Project Staff