Innovations I: Using Sediment Core Analyses to Attempt to Quantify the Historical Impact of Spawning Alewife

G. S. Nau
Acadia University

N. McLellan
Ducks Unlimited Canada

M. Mallory
Acadia University

I. Spooner
Acadia University

M.J.W. Stokesbury
Acadia University

Follow this and additional works at: http://scholarworks.umass.edu/fishpassage_conference
Using sediment core analyses to attempt to quantify the historical impact of spawning Alewife

Nau, G.S.a, McLellan, N.b, Mallory, M.a, Spooner, I.a, Stokesbury, M.J.W.a

a Biology Department, Acadia University, Wolfville, Nova Scotia, Canada, B4P 2R6
b Ducks Unlimited Canada, Atlantic Region Office, Amherst, Nova Scotia, B4H 3Z5
Dams, Fishways and Fish

• Anadromous fish transport marine derived nutrients (MDN) into freshwater
• Provide obstacles for anadromous fish migration
 – Limit input of MDN
• Historical records of fish abundance can be severely lacking.
• Dams and fishways are too often unstudied, and impacts on freshwater productivity and fish migration are unknown.
Detecting a Historical Marine Signal

• Lake history in sediment
 – Record of historical lake ecosystems
 – Spawning grounds
• Is there an abiotic proxy for anadromous fish presence?
• Has the installation of dams, fishways and tidegates affected productivity?
 – Can a change in productivity be attributed to altered fish migration?
Study Sites: Cumberland Marsh Region, Nova Scotia and New Brunswick, Canada
Gaspereau River System, Nova Scotia, Canada
Study Sites

• Hackmatack Lake, Cumberland Marshes
 – Heavily modified, very little records
• Round Lake, Cumberland Marshes
 – Relatively undisturbed, very little records
• Gaspereau Lake, Gaspereau Valley
 – Heavily modified, well recorded, deep history
Sediment Coring

• Nova Scotia:
 – Round Lake
 – Gaspereau Lake
• New Brunswick:
 – Hackmatack Lake
 – Silver Lake
• Maine, USA:
 – Togus Pond
Sediment Cores

XRF:
- Dating: Pb
- Input of trace metals

Stable Isotopes:
- $\delta C + \delta N$
- Productivity
- δS: Marine influence

Recent couple of decades, mixed organic
- Older, many decades
- Much older, 100-200+ years, possibly pre-tide gate

Age increases with depth
Fish blending and analysis

• Whole alewife blended; subsample dried and analyzed
 – ICP-MS, SIA(δC + δN + δS)

• Results of fish analyses will help in identifying abiotic proxy, as well as in estimating historical nutrient inputs by fishes.
 – Can be compared to current knowledge of fish passage and population
Future steps

• Process results of SIA
 – Productivity changes
 – Marine signal

• Process and analyze Gaspereau Lake core
 – Identification of abiotic proxy for anadromous fish
Implications

• Dam and tide gate effects
 – Freshwater productivity
 – Fish access to spawning habitat

• Reliable assessment of historical anadromous fish abundance
 – Can be adapted for use in lakes in other regions and for different species.
Challenges (so far)

• Lack of historical records
 – Modifications and disturbance
 – Fish abundance

• Lack of controls
 – Pervasiveness of dams and fishways in maritime provinces
 – Unique habitat

• Time and resources
 – Limited in number of cores per lake
 – Limited in resolution
Thanks

• Dewey Dunnington
• Amanda Loder
• Ian Spooner
• Chris White
• Lee Millett
• Freya Keyser

• Funding:
 – NSERC
 – Ducks Unlimited Canada
 – Irving Oil Ltd.
Questions?
Comments?
Suggestions?
georgenau@acadiau.ca