
Figure 3.26: Synthesis of new shapes (left) based on the Beta Shape Machine samples
(green box) and embedded deformation on input shape parts (right).

labels: we categorized airplanes into commercial jets, fighter jets, propeller aircraft and

UAVs, chairs into benches, armchairs, side and swivel chairs, and bikes into bicycles, tri-

cycles and motorbikes. We compute activation probabilities in the uppermost layer through

mean-field inference given each input shape, and used those as descriptors. Using 10 train-

ing examples per class, and a single nearest neighbor classification scheme based on L1

norm distance, the rest of the shapes were classified with accuracy 92%, 94%, 96.5% for

airplanes, chairs, and bikes respectively.
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3.3.3.3 Shape synthesis

Figure 1.3(right) and 3.20(right) demonstrates synthesized chairs and airplanes using

samples from the BSM model trained on these large collections. Our shape synthesis proce-

dure makes use of the shape parts segmented by our method in these collections. However,

not all shapes are segmented perfectly: even if the labeling accuracy of our method is high

as demonstrated above, minor errors along segmentation boundaries (e.g., mislabeled in-

dividual faces crossing boundaries) cause visual artifacts when shapes are assembled from

these segmented parts. Such errors are common in graph cuts. Corrections would require

re-meshing or other low-level mesh operations. We instead manually flagged 25% of air-

planes and 40% of chairs with imperfect segmentation boundaries. These were excluded

during the nearest neighbors procedure for selecting parts given the BSM samples. We still

believe that the amount of human supervision for this process is much smaller compared

to previous generative models [54] that required manually specified shape segmentations

for at least half or the whole input collections. We also conducted a perceptual evaluation

of our synthesized shapes with 31 volunteers recruited through Amazon Mechanical Turk.

Our user study indicates that the shapes produced by our model were seen as plausible as

the training shapes of the input collections.

Implementation and running times: Our method is implemented in C++ and is CPU-

based. Learning the BSM model requires 45 hours for our largest dataset (3K chairs) with

a E5-2697 v2 processor. Running times scale linearly with the dataset size.

3.3.4 User study

We conducted a perceptual evaluation of our synthesized shapes with volunteers re-

cruited through Amazon Mechanical Turk. Each volunteer performed 40 pairwise compar-

isons in a web-based questionnaire. Each comparison was between images of two shapes

from the chairs or airplanes domain. For each pair, one shape was coming from the training

collection of one of the two domains, and the other shape was coming from our collection
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of synthesized shapes of the same domain. The two shapes were randomly sampled from

their collections. They appeared in a random order on the web pages of the questionnaire.

The participants were asked to choose which of the two presented shapes was more

plausible, or indicate whether they found both shapes to be equally plausible, or none

of them to be plausible. Each questionnaire contained 20 unique comparisons and each

comparison was repeated twice by flipping the order of the two shapes in the question. To

diminish the risk of contaminating the results of the user study with unreliable respondents,

we excluded participants that gave two different answers to more than 6 of the 20 unique

comparisons, or took less than 2 minutes in total to complete the questionnaire.

The number of reliable Mechanical Turk respondents after the above filtering was 31.

A total of 1240 pairwise comparisons were gathered in total. The results are visualized in

the following figure. The user study indicates that the shapes produced by our model were

seen as plausible as the training shapes of the input collection.

195 votes: 210 votes: 171 votes:32 votes:
synthesized airplanes

are more plausible
both airplanes 
are plausible 

none are
plausible

training airplanes
are more plausible

148 votes: 260 votes: 163 votes:61 votes:
synthesized chairs
are more plausible

both chairs 
are plausible 

none are
plausible

training chairs
are more plausible

Figure 3.27: Results of our Amazon Mechanical Turk user study

3.3.5 Summary and Future Extensions

In this section, I described a method for joint shape analysis and synthesis in a shape

collection: our method learns part templates, computes shape correspondence and part

segmentations (as in previous section), and in addition, it also generates new shape sur-

face variations, and yields shape descriptors for fine-grained classification. Our method
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represents an early attempt in this area, thus there are several limitations to our method

and many exciting directions for future work. First, our method is greedy in nature. Our

method relies on approximate inference for both the CRF deformation and the BSM gen-

erative model. Learning relies on approximate techniques. As a result, the sampled point

clouds are not smooth and noiseless. We used conservative deformations of parts from

the input collection to factor out the noise and preserve surface detail during shape syn-

thesis. Assembling shapes from parts suffers from various limitations: adjacent parts are

not always connected in a plausible manner, segmentation artifacts affect the quality of the

produced shapes, topology changes are not supported. Instead of re-using parts from the

input collection, it would be more desirable to extend our generative model with layers that

produce denser point clouds. In this case, the denser point clouds could be used as input

to surface reconstruction techniques to create new shapes entirely from scratch. However,

the computational cost for learning such generative model with dense output would be

much higher. From this aspect, it would be interesting to explore more efficient learning

techniques in the future. Deep learning architectures could be used to estimate initial seg-

mentations. The learned shape descriptor could improve the shape grouping. Finally, the

variability of the synthesized shapes seems somewhat limited. Fruitful directions include

investigating deeper architectures, better sampling strategies, and matching templates with

multiple symmetric parts if such exist in the input shapes.
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CHAPTER 4

CONCLUSIONS AND FUTURE WORK

In this thesis, I have discussed deep learning algorithms that are capable of automati-

cally inferring parametric representations of shape families, which could be used to gener-

ate new 3D shapes from high-level user specifications, such as freehand sketches. The goal

is to provide users intuitive tools that enable rapid and easy creation of detailed shapes.

With these modeling algorithms, I hope to significantly shorten the design cycle of 3D

products and make it easy for users to create complex and plausible shapes.

This thesis only represented a first step towards building generative representations of

3D shapes. Concurrently to my work, other deep generative models have been proposed

based on volumetric shape representations [138], view-based shape representations [4],

and point sets [30] that do not rely on point correspondences. However, they all tend to

build coarse shapes without much surface detail that artists would expect. Most impor-

tantly, in all these works, there is lack of interactive control in the produced shapes. It

would be interesting to combine these new generative models with our pipeline proposed

in Chapter 2 and control the output of these models interactively through sketches. Con-

trolling shape synthesis through other input modalities, such as gestures or natural language

wold be also an exciting direction. Finally, another highly unexplored area is how to cou-

ple these generative models of shapes with physical shape representations. The shapes

created by current generative shape models are not guaranteed to be manufacturable or

printable. Investigating deep architectures that learn to synthesize physical parameters of

shapes would be a promising step towards this direction.
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Synthesis from Sketches via Procedural Models and Convolutional Networks ”, IEEE

Transactions on Visualization and Computer Graphics 2017

100



• Haibin Huang, Evangelos Kalogerakis, Benjamin Marlin “Analysis and synthesis

of 3D shape families via deep-learned generative models of surfaces ”, Computer

Graphics Forum, Vol. 34, No. 5, 2015 (Proceedings of SGP 2015)

• Chongyang Ma, Haibin Huang, Alla Sheffer, Evangelos Kalogerakis, Rui Wang

“Analogy-Driven 3D Style Transfer ”, Computer Graphics Forum, Vol 33, Issue 2,

175–184 (Eurographics 2014)

• Yahan Zhou, Haibin Huang, Li-Yi Wei and Rui Wang, “Point Sampling with Gen-

eral Noise Spectrum”, ACM Trans Graph. 31(4) (SIGGRAPH 2012), pp.76:01-76:11

101



APPENDIX B

CNN IMPLEMENTATION DETAILS FOR SECTION 2.3

We provide here details about our CNN implementation and the transformations used

in its convolutional and pooling layers.

Architecture implementation Each of our two sub-networks follow the structure of

AlexNet [64]. In general, any deep convolutional neural network, reasonably pre-trained

on image datasets, could be used instead. We summarize the details of AlexNet structure

for completeness. The first convolutional layer processes the 227x227 input image with

96 filters of size 11x11. Each filter is applied to each image window with a separation

(stride) of 4 pixels. In our case, the input image has a single intensity channel (instead

of the three RGB channels used in computer vision pipelines). The second convolutional

layer takes as input the max-pooled output of the first convolutional layer and processes

it with 256 filters of size 5x5x48. The third convolutional layer processes the max-pooled

output of the second convolutional layer with 384 filters of size 3x3x256. The fourth and

fifth convolutional layers process the output of the third and fourth convolutional layer

respectively with 384 filters of size 3x3x192. There are two fully connected layers contain

4096 processing functions (nodes) each. Finally, the regression layer contains as many

regression functions as the number of the PM continuous parameters, and the classification

layer contains as many softmax functions as the number of PM discrete parameters. The

number of the PM discrete and continuous parameters depend on the rule set (statistics are

described in Section 3.1.5). The architecture is implemented using the Caffe [50] library.

Convolutional layer formulation Mathematically, each convolution filter k in a layer

l produces a feature map (i.e., a 2D array of values) hk,l based on the following transfor-
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mation:

hk,l[i, j] =

f
( N∑
u=1

N∑
v=1

∑
m∈M

wk,l[u, v,m] · hm,l−1[i+ u, j + v] + bk,l

)
(B.1)

where i, j are array (pixel) indices of the output feature map h, M is a set of feature

maps produced in the previous layer (with index l − 1), m is an index for each such input

feature map hm,l−1 produced in the previous layer, NxN is the filter size, u and v are

array indices for the filter. Each filter is three-dimensional, defined by NxNx|M| learned

weights stored in the 3D array wk,l as well as a bias weight bk,l. In the case of the first

convolutional layer, the input is the image itself (a single intensity channel), thus its filters

are two-dimensional (i.e., |M| = 1 for the first convolutional layer). Following [64], the

response of each filter is non-linearly transformed and normalized through a function f .

Let x = hk,l[i, j] be a filter response at a particular pixel position i, j. The response is

first non-linearly transformed through a rectifier activation function that prunes negative

responses f1(x) = max(0, x), and a contrast normalization function that normalizes the

rectified response according to the outputs xk′ of other filters in the same layer and in the

same pixel position: f2(x) = [x/(α+β
∑

k′∈K x
2
k′)]

γ [64]. The parameters α, β, γ, and the

filters K used in contrast normalization are set according to the cross-validation procedure

of [64] (α = 2.0, β = 10−4, γ = 0.75, |K| = 5).

Pooling layer formulation The transformations used in max-pooling are expressed as

follows:

hk,l[i, j] = max
{
hk,l−1[u, v]

}
i<u<i+N,j<v<j+N

where k is an index for both the input and output feature map, l is a layer index, i, j

represent output pixel positions, and u, v represent pixel positions in the input feature map.
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APPENDIX C

IMPLEMENTATION DETAILS OF MEAN-FIELD INFERENCE
AND BSM MODEL OF SECTIONS 3.2 AND 3.3

C.1 Mean-field inference equations

According to the mean-field approximation theory [63], given a probability distribution

P defined over a set of variables X1, X2, ..., XV , we can approximate it with a simpler

distribution Q, expressed as a product of individual distributions over each variable, such

that the KL-divergence of P from Q is minimized:

KL(Q || P ) =
∑
X1

∑
X2

...
∑
XV

Q(X1, X2, ..., XV ) · ln Q(X1, X2, ..., XV )

P (X1, X2, ..., XV )

In the case of continuous variables, the above sums are replaced with integrals over their

value space. Suppose that the original distribution P is defined as a product of factors:

P (X1, X2, ..., XV ) =
1

Z

∏
s=1...S

φs(Ds)

where Ds is a subset of the random variables (called scope) for each factor s in the distri-

bution P , and Z is a normalization constant.

Minimizing the KL-divergence of P from Q yields the following mean-field updates

for each variable Xv (v = 1...V ):

Q(Xv) =
1

Zv
exp

{∑
s

∑
Ds−{Xv}

Q(Ds − {Xv}) lnφs(Ds)

}
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where Zv =
∑
Xv

Q(Xv) is a normalization constant for this distribution (the sum is replaced

with the integral over the value space ofXv if this is a continuous variable), and Ds−{Xv}

is the subset of the random variables for the factor s excluding the variable Xv.

Below we specialize the above update formula for each of our variable in our proba-

bilistic model.

C.1.1 Deformation variables

The mean-field update for each deformation variables is the following:

Q(Dt,k) ∝ exp

{
− 0.5

∑
p

Q(Ut,p = k)(Dt,k −Xt,p)
TΣ−11 (Dt,k −Xt,p)

− 0.5
∑

k′∈N(k)

(Dt,k − µt,k,k′)
TΣ−12 (Dt,k − µt,k,k′)

}

where N (k) includes all neighboring points k′ of point k on the part template (see main

text of the paper) and µt,k is a 3D vector defined as follows:

µt,k,k′ = EQ[Dt,k′ ] + (EQ[Yk]− EQ[Yk′ ]))

We note that the above distribution is a product of Gaussians; when re-normalized, the

distribution is equivalent to a Gaussian with the following expectation, or mean, which we

use in other updates:

EQ[Dt,k] =(
∑
p

Q(Ut,p = k)Σ−11 +
∑

k′∈N(k)

Σ−12 )−1

· (
∑
p

Q(Ut,p = k)Σ−11 Xt,p +
∑

k′∈N(k)

Σ−12 µt,k,k′) (C.1)

The above formula indicates that the most likely deformed position of a point on a part

template is a weighted average of its associated points on the input surface as well as its
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neighbors. The weights are controlled by the covariance matrices Σ1 and Σ2 as well as the

degree of association between the part template point and each input surface point, given

by Q(Ut,p = k). The covariance matrix of the above distribution is forced to be diagonal

(see next section); its diagonal elements tend to increase when the input surface points have

weak associations with the part template point, as indicated by the following formula:

CovQ[Dt,k] = (
∑
p

Q(Ut,p = k)Σ−11 +
∑

k′∈N(k)

Σ−12 )−1

Computing the above expectation and covariance for each variable Dt,k involving sum-

ming over every surface point p on the input shape t. This is computationally too expensive.

Practically in our implementation, we find the 100 nearest input surface points for each part

template point k, and we also find the 20 nearest part template points for each input surface

point p. For each template point k, we always keep indices to its 100 nearest surface points

as well as the surface points whose nearest points include that template point k. Instead of

summing over all the surface points of each input shape, for each template point k we sum

over its abovementioned indices to surface point only. For the rest of the surface points,

the distribution values Q(Ut,p = k) are practically negligible and are skipped in the above

summations.

C.1.2 Part template variables

For each part template point Yk, the mean-field update is given by:

Q(Yk) ∝ exp

{
− .5(Yk − µk)

TΣ−12 (Yk − µk)

}

where µk is the mean, or expectation (3D vector), defined as follows:
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µk = EQ[Yk] =
1

|N (k)|
∑
k′

(
EQ[Yk′ ] +

1

T

∑
t

(EQ[Dt,k]− EQ[Dt,k′ ])
)

andN (k) includes all neighboring points k′ of point k on the part template, T is the number

of input shapes. The covariance matrix for the above distribution is given by Σ2.

C.1.3 Point correspondence variables

The mean-field update for the latent variables Ut,p yields a categorical distribution com-

puted as follows:

Q(Ut,p = k) ∝ exp

{
− 0.5(EQ[Dt,k]−Xt,p)

TΣ−11 (EQ[Dt,k]−Xt,p)

− 0.5Tr(Σ−11 · CovQ[Dt,k])

− 0.5(fk − ft,p)
TΣ−13 (fk − ft,p)− ln ε ·Q(St,p = label(k))

}

where Tr(Σ−11 ·CovQ[Dt,k]) represents the matrix trace, ε is a small constant discussed

in the main text of the paper. For computational efficiency reasons, we avoid computing the

above distribution for all pairs of part template and input surface points. As in the case of

the updates for the deformation variables, we keep indices to input surface point positions

that are nearest neighbors to part template points and vice versa. We compute the above

distributions only for pairs between these neighboring points. For the rest of the pairs, we

set Q(Ut,p = k) = 0.

C.1.4 Segmentation variables

The mean-field update for the variables St,p also yields a categorical distribution:
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Q(St,p = l) ∝ exp

{∑
k

Q(Ut,p = k)[label(k) 6= l] ln ε

+
∑

p′∈N(p)

∑
l′ 6=l

Q(St,p′ = l′) ln(1.0− Φ)

+
∑

p′∈N(p)

Q(St,p′ = l) ln(Φ)

}

where N(p) is the neighborhood of the input surface point used for segmentation (see

main text for more details), Phi evaluates feature differences between neighboring surface

points (see main text for its definition). The binary indicator function [label(k) 6= l] is 1 if

the expression in brackets holds, otherwise it is 0.

C.2 Covariance matrix updates

The covariance matrices of our factors are updated as follows:

Σ1 =
1

Z1

∑
t,k,p∈N (k)

Q(Ut,p = k)(EQ[Dt,k]−Xt,p)(EQ[Dt,k]−Xt,p)
T

Σ2 =
1

Z2

∑
t,k,k′∈N(k)

((EQ[Dt,k]− EQ[Dt,k′ ])− (EQ[Yk]− EQ[Yk′ ]))·

· (EQ[Dt,k]− EQ[Dt,k′ ]− (EQ[Yk]− EQ[Yk′ ]))
T

Σ3 =
1

Z3

∑
t,k,p∈N (k)

Q(Ut,p = k)(fk − ft,p)(fk − ft,p)
T
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Σ5 =
1

Z5

∑
t,p,p′∈N(p)

(ft,p − ft,p′)(ft,p − ft,p′)
T

where Z1 = Z3 =
∑

t,k,p∈N (k)

Q(Ut,p = k), Z2 =
∑

t,k,k′∈N(k)

1, Z5 =
∑

t,p,p′∈N(p)

1. The

computed covariance matrices are forced to be diagonal i.e., in the above computations

only the diagonal elements of the covariance matrices are taken into account, while the rest

of the elements are set to 0.

C.3 Contrastive divergence

Contrastive divergence iterates over the following three steps in our implementation:

variational (mean-field) inference, stochastic approximation (or sampling), and parameter

updates. We discuss the steps in detail below.

Variational inference step. Our deformation model yields expectations over deformed

point positions of the part templates based on Equation C.1. For each deformed point,

we find the surface point that is closest to its expected position. Let Dk,τ [t] the observed

surface position of point k for an input shape t. The subscript τ takes values 1, 2, or 3 that

correspond to the x−,y−,z− coordinate of the point respectively. Let Ek[t] represents the

observed existence of a point k (binary variable) also inferred by our deformation model.

Given all observed point positions D[t] and existences E[t] per shape t, we perform bottom-

up mean-field inference on the binary hidden nodes according to the following equations

in the following order:
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Q(H(1)
m = 1|D[t],E[t]) = σ

(
wm,0 +

∑
k∈Nm,τ

(ak,τ,m − ck,τ,m) ln(Dk,τ [t])Ek[t]

+
∑

k∈Nm,τ

(bk,τ,m − dk,τ,m) ln(1−Dk,τ [t])Ek[t]

+
∑
n

wm,nQ(H(2)
n = 1|D[t],E[t])

)

Q(H(2)
n = 1|D[t],E[t]) = σ

(
wn,0 +

∑
m

wm,nQ(H(1)
m = 1|D[t],E[t])

+
∑
o

wn,oQ(H(3)
o = 1|D[t],E[t])

)

Q(H(3)
o = 1|D[t],E[t]) = σ

(
wo,0 +

∑
n

wn,oQ(H(2)
n = 1|D[t],E[t])

)

where σ(·) represents the sigmoid function, Nm is the set of the observed variables

each hidden node (variable) H(1)
m is connected to. The mean-field updates for H(1)

m involve

a weighted summation over the observed variables D[t] per part, which can be thought of as

a convolutional scheme per part. We perform 3 mean-field iterations alternating the updates

over the above hidden nodes. During the first iteration, we initialize Q(H
(2)
n = 1) = 0 and

Q(H
(3)
o = 1) = 0 for each hidden node n and o.

Stochastic approximation. This step begins by sampling the binary hidden nodes

of the top layer for each training shape t. Sampling is performed according to the inferred

distributionsQ(H
(3)
o = 1|D[t],E[t]) of the previous step. LetH(3)

o [t′] the resulting sampled

0/1 values. Then we perform top-down mean-field inference on the binary hidden nodes

of the other layers as well as the visible layer:
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Q(H(2)
n = 1|E[t],H(3)[t′]) = σ

(
wn,0 +

∑
m

wm,nQ(H(1)
m = 1|E[t],H(3)[t′])

+
∑
o

wn,oH
(3)
o [t′]

)

Q(H(1)
m = 1|E[t],H(3)[t′]) = σ

(
wm,0 +

∑
k∈Nm,τ

(ak,τ,m − ck,τ,m) ln(Dk,τ [t
′])Ek[t]

+
∑

k∈Nm,τ

(bk,τ,m − dk,τ,m) ln(1−Dk,τ [t
′])Ek[t]

+
∑
n

wm,nQ(H(2)
n = 1|E[t],H(3)[t′])

)

Q(Dk,τ |E[t],H(3)[t′]) ∝

D
(ak,τ,0−1)+

∑
m∈Nk

ak,τ,mQ(H
(1)
m =1|E[t],H(3)[t′])+

∑
m∈Nk

ck,τ,m(1−Q(H
(1)
m =1|E[t],H(3)[t′]))

k,τ

(1−Dk,τ )
(bk,τ,0−1)+

∑
m∈Nk

bk,τ,mQ(H
(1)
m =1|E[t],H(3)[t′])+

∑
m∈Nk

dk,τ,m(1−Q(H
(1)
m =1|E[t],H(3)[t′]))

whereDk,τ [t
′] in the above mean-field updates is set to be the expectation of the above Beta

distribution and Nk is the set of the hidden variables each observed node (variable) Dk,τ

is connected to. We note that sampling all the variables in the model caused contrastive

divergence not to converge, thus we instead used expectations of the above distributions

instead. As in the previous step, we performed 3 iterations alternating over the above

mean-field updates. During the first iteration, we skip the terms involving Dk,τ [t
′] during

the inference of the hidden nodes of the first layer. At the second and third iteration, we

infer distributions for the hidden layers as follows:

Q(H(3)
o = 1|D[t′],E[t]) = σ

(
wo,0 +

∑
n

wn,oQ(H(2)
n = 1|D[t′],E[t])

)
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Q(H(2)
n = 1|D[t′],E[t]) = σ

(
wn,0 +

∑
m

wm,nQ(H(1)
m = 1|D[t′],E[t])

+
∑
o

wn,oQ(H(3)
o = 1|D[t′],E[t])

)

Q(H(1)
m = 1|D[t′],E[t]]) = σ

(
wm,0 +

∑
k∈Nm,τ

(ak,τ,m − ck,τ,m) ln(Dk,τ [t
′])Ek[t]

+
∑

k∈Nm,τ

(bk,τ,m − dk,τ,m) ln(1−Dk,τ [t
′])Ek[t]

+
∑
n

wm,nQ(H(2)
n = 1|D[t′],E[t])

)

Parameter updates. The parameters of the model are updated with project gradi-

ent ascent according to the expectations over the final distributions computed in the pre-

vious two steps and the observed data. We list the parameter updates below. We note

that sgn(·) used below denotes the sign function, ν is the iteration number (or epoch),

η is the learning rate, µ is the momentum rate. The learning rate is set to 0.001 ini-

tially, and is multiplied by a factor 0.9 when at the previous epoch the reconstruction error∑
t,k,τ |Dk,τ [t]Ek[t]−Dk,τ [t

′]Ek[t]| increases, and it is multiplied by a factor 1.1 when the

reconstruction error decreases. The momentum rate is progressively increased from 0.5

towards 1.0 asymptotically during training.

ak,τ,0 = max(ak,τ,0 + ∆ak,τ,0[ν], 0) , where

∆ak,τ,0[ν] = µ ·∆ak,τ,0[ν − 1] + η
1

T

∑
t

(
ln(Dk,τ [t])− ln(Dk,τ [t

′])

)
− ηλ1

∑
k′∈Nk

sgn(ak,τ,0 − ak′,τ,0)− ηλ2sgn(ak,τ,0)
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bk,τ,0 = max(bk,τ,0 + ∆bk,τ,0[ν], 0) , where

∆bk,τ,0[ν] = µ ·∆bk,τ,0[ν − 1] + η
1

T

∑
t

(
ln(1−Dk,τ [t])− ln(1−Dk,τ [t

′])

)
− ηλ1

∑
k′∈Nk

sgn(bk,τ,0 − bk′,τ,0)− ηλ2sgn(bk,τ,0)

ak,τ,m = max(ak,τ,m + ∆ak,τ,m[ν], 0) , where

∆ak,τ,m[ν] = µ ·∆ak,τ,m[ν − 1] + η
1

T

∑
t

(
ln(Dk,τ [t])Q(H(1)

m = 1|D[t],E[t])

− ln(Dk,τ [t
′])Q(H(1)

m = 1|D[t′],E[t])

)
− ηλ1

∑
k′∈Nk

sgn(ak,τ,m − ak′,τ,m)− ηλ2sgn(ak,τ,m)

bk,τ,m = max(bk,τ,m + ∆bk,τ,m[ν], 0) , where
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∆bk,τ,m[ν] = µ ·∆bk,τ,m[ν − 1] + η
1

T

∑
t

(
ln(1−Dk,τ [t])Q(H(1)

m = 1|D[t],E[t])

− ln(1−Dk,τ [t
′])Q(H(1)

m = 1|D[t′],E[t])

)
− ηλ1

∑
k′∈Nk

sgn(bk,τ,m − bk′,τ,m)− ηλ2sgn(bk,τ,m)

ck,τ,m = max(ck,τ,m + ∆ck,τ,m[ν], 0) , where

∆ck,τ,m[ν] = µ ·∆ck,τ,m[ν − 1] + η
1

T

∑
t

(
ln(Dk,τ [t])(1−Q(H(1)

m = 1|D[t],E[t])

− ln(Dk,τ [t
′])(1−Q(H(1)

m = 1|D[t′],E[t])

)
− ηλ1

∑
k′∈Nk

sgn(ck,τ,m − ck′,τ,m)− ηλ2sgn(ck,τ,m)

dk,τ,m = max(dk,τ,m + ∆dk,τ,m[ν], 0) , where

∆dk,τ,m[ν] = µ ·∆dk,τ,m[ν − 1] + η
1

T

∑
t

(
ln(1−Dk,τ [t])(1−Q(H(1)

m = 1|D[t],E[t])

− ln(1−Dk,τ [t
′])(1−Q(H(1)

m = 1|D[t′],E[t])

)
− ηλ1

∑
k′∈Nk

sgn(dk,τ,m − dk′,τ,m)− ηλ2sgn(dk,τ,m)
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wm,0 = wm,0 + ∆wm,0[ν] , where

∆wm,0[ν] = µ ·∆wm,0[ν − 1] + η
1

T

∑
t

(
Q(H(1)

m = 1|D[t],E[t])

−Q(H(1)
m = 1|D[t′],E[t])

)
− ηλ2sgn(wm,0)

wn,0 = wn,0 + ∆wn,0[ν] , where

∆wn,0[ν] = µ ·∆wn,0[ν − 1] + η
1

T

∑
t

(
Q(H(2)

n = 1|D[t],E[t])

−Q(H(2)
n = 1|D[t′],E[t])

)
− ηλ2sgn(wn,0)

wo,0 = wo,0 + ∆wo,0[ν] , where
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∆wo,0[ν] = µ ·∆wo,0[ν − 1] + η
1

T

∑
t

(
Q(H(3)

o = 1|D[t],E[t])

−Q(H(3)
o = 1|D[t′],E[t])

)
− ηλ2sgn(wo,0)

wm,n = wm,n + ∆wm,n[ν] , where

∆wm,n[ν] = µ ·∆wm,n[ν − 1] + η
1

T

∑
t

(
Q(H(1)

m = 1|D[t],E[t])Q(H(2)
n = 1|D[t],E[t])

−Q(H(1)
m = 1|D[t′],E[t])Q(H(2)

n = 1|D[t′],E[t])

)
− ηλ2sgn(wm,n)

wn,o = wn,o + ∆wn,o[ν] , where

∆wn,o[ν] = µ ·∆wn,o[ν − 1] + η
1

T

∑
t

(
Q(H(2)

n = 1|D[t],E[t])Q(H(3)
o = 1|D[t],E[t])

−Q(H(2)
n = 1|D[t′],E[t])Q(H(3)

o = 1|D[t′],E[t])

)
− ηλ2sgn(wn,o)
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C.3.1 Parameter updates for the structure part of the BSM

To learn the parameters wk,0, wk,r, wr,0 involving the variables E and G of the BSM

part modeling the shape structure, we similarly perform contrastive divergence with the

following steps:

Inference. Given the observed point existences E[t], we infer the following distribution

over the latent variables G (we note that this is exact inference):

Q(Gr = 1|E[t]) = σ(wr,0 +
∑
k

wk,rEk[t])

Sampling. We sample the binary latent variables G according to the inferred distribu-

tion Q(Gr = 1|E[t]). Let Gr[t
′] the resulting sampled 0/1 values. We perform inference

for the existence variables as follows:

Q(Ek = 1|G[t′]) = σ(wk,0 +
∑
r

wk,rGr[t
′])

and repeat for the latent variables:

Q(Gr = 1|G[t′]) = σ(wr,0 +
∑
k

wk,rQ(Ek = 1|G[t′]))

Parameter updates The parameters of the structure part of the BSM are updated as

follows:

wk,0 = wk,0 + ∆wk,0[ν] , where
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∆wk,0[ν] = µ ·∆wk,0[ν − 1] + η
1

T

∑
t

(
Ek[t]−Q(Ek = 1|G[t′])

)
− ηλ1

∑
k′∈Nk

sgn(wk,0 − wk′,0)− ηλ2sgn(wk,0)

wr,0 = wr,0 + ∆wr,0[ν] , where

∆wr,0[ν] = µ ·∆wr,0[ν − 1] + η
1

T

∑
t

(
Q(Gr = 1|E[t])−Q(Gr = 1|G[t′])

)
− ηλ2sgn(wr,0)

wk,r = wk,r + ∆wk,r[ν] , where

∆wk,r[ν] = µ ·∆wk,r[ν − 1] + η
1

T

∑
t

(
Ek[t]Q(Gr = 1|E[t])

−Q(Ek = 1|G[t′])Q(Gr = 1|G[t′])

)
− ηλ1

∑
k′∈Nk

sgn(wk,r − wk′,r)− ηλ2sgn(wk,r)
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