






Average casesWorst cases Best cases

Figure 8.10. Throughput/Watt and throughput improvement using PDRF over the
DVFA-only baseline for INT/FP dual-core AMP.

vs. Swap-only : This is a dynamic baseline that can swap threads between cores

at runtime. As could be seen from Figure 8.9, a substantial increase in through-

put/Watt is achieved using PDRF even over the swap-only baseline. Again, we did

not encounter any combination where the swap-only scheme performed better than

PDRF. As expected, PDRF performed much better than the swap-only scheme for

cases when DVFA would come in handy and when opportunities to swap threads are

limited. Both these cases occur for workloads that are primarily integer (INT) or

floating-point (FP) intensive and do not exhibit many phases. For such cases, once

the affine core is chosen, the execution can be significantly speeded up by pushing the

corresponding core to the boost mode. In line with our expectation, we observe many

uni-flavored workloads (e.g., intStress, adpcm are INT intensive while fpStress, equake

are FP intensive) among the best performing cases. On an average, for the 100 com-

binations, PDRF achieved a weighted (geometric) throughput/Watt improvement of

about 15.7% (14.9%) and a weighted throughput improvement of about 53.9% over

the swap-only baseline.

62



vs. DVFA-only : This baseline has the capability to dynamically boost the volt-

age/frequency levels of the cores. In contrast to the previous two baselines, there were

few benchmark combinations (e.g., {adpcm dec.,mcf }, {bitcount,mcf }) in Figure 8.10

for which PDRF performed worse than DVFA-only scheme. In the worst case, the

IPS/Watt degradation is about 10%. This is because for few rare cases, PDRF ended

up making wrong thread scheduling decision due to error in throughput/Watt pre-

diction at the time of decision making. As a result of this, PDRF performed few

non-beneficial thread swaps and opted for boosting the voltage and frequency of the

cores at a much later stage of the program execution. Since PDRF is an opportunis-

tic scheme that looks for thread scheduling opportunity only upon a phase change,

a wrong thread scheduling decision made, is retained for the entire phase, magnify-

ing its impact. The PDRF achieves significant benefits over the DVFA-only baseline

when workloads with distinct INT/FP phases (e.g., wupwise, ammp) or symmetric

workload combinations (e.g., {equake, equake}, {cpu, cpu}) are encountered. An

average weighted (geometric) throughput/Watt improvement of about 7.5% (5.4%)

and weighted throughput improvement of about 20% was achieved by the proposed

PDRF over this baseline.

63



CHAPTER 9

EVALUATING PDRF FOR A
LOW-POWER/HIGH-PERFORMANCE DUAL-CORE

Most of the current asymmetric multicore research has focused on designs with

small and big cores [18, 31, 44]. The reconfiguration frameworks, RDRF and PDRF,

presented in the earlier chapters were evaluated using the custom baseline cores (INT

and FP). To explore the potential of the proposed approach further, we employ PDRF

for a more commonly studied dual-core AMP consisting of low-power (LP) and high-

performance (HP) cores in this chapter.

9.1 LP and HP core parameters

The considered LP and HP cores are at the two ends of the power/performance

spectrum. This is one of the worst cases for a scheme for predicting the through-

put/Watt on the HP core based on the activities observed in the LP core and vice

versa. The parameters used for both the cores is shown in Table 9.1. Most of these

parameters and the execution latencies were taken from [14]. It can be seen from

Table 9.1 that the two cores are significantly different. The HP core is a 4-way issue,

out-of-order (OOO) core with large core resources (e.g., integer (INT)/ floating-point

Table 9.1. Chosen core parameters for LP and HP cores

Param LP HP Param LP HP

Issue 2 4 LS units 1 2

INTREG 64 96 LSQ NA 32

FPREG 64 80 ROB NA 128

INTISQ NA 36 L1(I/D) 32K 32K

FPISQ NA 24 L2 512K 2M

Type In-order OOO

64



(FP) registers, issue queues, L2 cache) while the LP core is a 2-way issue, in-order

core with minimal resources to cater to low power applications. Similar to the INT

and FP cores described in Chapter 8, the LP and HP cores can also operate either

in normal or boost mode and, the corresponding voltage and frequency levels in the

two modes are shown in Table 9.2.

Table 9.2. Voltage/Frequency levels of LP and HP cores.

Core-type Normal Boost

LP 0.81 V / 1 GHz 0.9 V / 1.6 GHz

HP 1.1 V / 2 GHz 1.3 V / 3 GHz

9.2 Counter selection for IPC/Watt estimation

Due to the significant difference in the microarchitecture of the baseline cores, the

counters used for IPC/Watt estimation on INT/FP cores may not work for LP/HP

cores. Hence, the expressions for IPC/Watt estimation pertaining to all the 8 cases

(4 for the same core and 4 more for the other core) were re-trained for the LP/HP

dual-core AMP. A subset of the 8 expressions that correspond to IPC/Watt prediction

in the normal mode is shown in Table 9.3.

Table 9.3. IPC/Watt expressions trained for the normal mode.
HPCs of/Prediction on Expression

LP/HP -1.2 × BMP - 0.1 × L1m +
0.04 × Br + 3.6 × 10-4 × S + 0.05

HP/LP -0.28 × L1m - 0.04 × Ld +
-0.5 × BMP + 0.1 × TLBm + 0.08

LP/LP 0.2 × IPC - 8 × 10-4 × S + 0.04

HP/HP 0.02 × IPC - 0.01 × L1m + 0.04

9.3 Evaluating the accuracy of IPC/Watt prediction

As it is evident from Figure 9.1, we achieved a reasonably high prediction accuracy

in estimating the IPC/Watt at both the operating modes and on the two core-types.

The maximum average error was about 16.4% when predicting the IPC/Watt on the

LP core in normal mode using the HPCs of the HP core. Figure 9.2 shows the error

distribution of the worst case, predicting the IPC/Watt on the other core in normal

65



0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

A
v

er
a

g
e 

%
E

rr
o

r

Normal Boost

Estimation on same core Estimation on other core 

Figure 9.1. Average percentage error in IPC/Watt (IPC/W) estimation.

-5

5

15

25

35

45

55

65

75

< -4σ -3σ -2σ -1σ 0 1σ 2σ 3σ > 4σ

F
re

q
u

en
cy

 (
%

)

LP-HPCs_LP-IPC/Watt (normal) HP-HPCs_HP-IPC/Watt (normal)

Figure 9.2. Distribution of error in estimating IPC/Watt on the other core using
HPCs of the host core.

mode using the HPCs of the host core. The high accuracy of the prediction is reflected

even in this figure as majority (about 90%) of the sample points are contained within

+/- 1σ. This analysis clearly illustrates the capability of the described prediction

mechanism to work for different architectures.

9.4 Evaluation

Having discussed the accuracy of IPC/Watt prediction for the LP and HP cores,

we evaluate the potential benefits of PDRF for the considered baseline cores (LP and

66



1
1.5
2
2.5
3
3.5
4
4.5
5

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

IP
S

 im
p

ro
v

em
en

t

IP
S

/W
a

tt
 im

p
ro

v
em

en
t

Weighted Throughput/Watt improvement

Geometric Throughput/Watt improvement

Geometric Throughput improvement

Worst cases Average cases Best cases 

Figure 9.3. Throughput/Watt and throughput improvement using PDRF over the
static baseline for LP/HP dual-core AMP.

HP). The same baselines discussed in Section 8.7 were used and the throughput/Watt

and throughput achieved using PDRF and the baselines were compared for a large

number (about 120) of multiprogrammed workloads. An in-depth analysis of the

comparison results is presented next.

vs. Static: By taking advantage of the program phases, the PDRF achieved

significant throughput and throughput/Watt benefits over the static baseline (see

Figure 9.3). Of the 120 combinations, we did not find any case where this base-

line performed better than PDRF. On an average, considering all the 120 combina-

tions, PDRF achieved a 27.2% (25%) weighted (geometric) improvement in through-

put/Watt over this baseline. Furthermore, by opportunistically opting for the boost

mode and efficiently making use of the HP core for high-compute intensive/high-ILP

program phases, PDRF resulted in much higher throughput improvement of about

190%, on an average, over the static baseline.

vs. Swap-only : PDRF achieved a throughput/Watt improvement of about

5.3% over the swap-only baseline even for the worst case (see Figure 9.4). Using the

proposed scheme, there was, on average, a 13.7% (13%) weighted (geometric) improve-

67



1
1.5
2
2.5
3
3.5
4
4.5

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

IP
S

 im
p

ro
v

em
en

t

IP
S

/W
a

tt
 im

p
ro

v
em

en
t

Weighted Throughput/Watt improvement

Geometric Throughput/Watt improvement

Geometric Throughput improvement

Worst cases Average cases Best cases 

Figure 9.4. Throughput/Watt and throughput improvement using PDRF over the
swap-only baseline for LP/HP dual-core AMP.

ment in IPS/Watt and about 91% improvement in IPS over the swap-only baseline.

The drop in the achieved throughput/Watt gain relative to the static baseline re-

flects the adaptable nature of the swap-only baseline, where at least the appropriate

core-type is chosen to suit the current execution phase of the threads.

We analyzed the benchmark combinations at the right end of Figure 9.4 for which

we achieve maximum IPS/Watt improvement over the swap-only baseline. It is in-

teresting to note that most of them are either compute-memory intensive benchmark

combinations (e.g., {fbench,basicmath}) or both are compute intensive benchmark

combinations (e.g., {adpcm,cpu}). In the case of {fbench,basicmath} combination, the

benchmark fbench is memory intensive with about 58% load/store instructions while

the benchmark basicmath is compute intensive. For such compute-memory intensive

benchmark combinations, besides deciding the best thread-to-core assignments, our

scheme makes use of DVFA to good extent. During high-IPC/high-ILP phases of

compute intensive benchmark, our scheme pushes the HP core to boost mode result-

ing in much faster execution and hence, better IPS/Watt. This is supported by much

higher IPS speedup for these combinations over the swap-only baseline (speedup of

68



1
1.5
2
2.5
3
3.5
4
4.5

0.88
0.98
1.08
1.18
1.28
1.38
1.48
1.58
1.68
1.78

IP
S

 im
p

ro
v

em
en

t

IP
S

/W
a

tt
 im

p
ro

v
em

en
t

Weighted Throughput/Watt improvement

Geometric Throughput/Watt improvement

Geometric Throughput improvement

Worst cases Average cases Best cases 

Figure 9.5. Throughput/Watt and throughput improvement using PDRF over the
DVFA-only baseline for LP/HP dual-core AMP.

about 3 for {fbench,basicmath}). For cases when both the threads go through high

compute intensive phases at about the same time (e.g., {adpcm,cpu}), our scheme

pushes the HP core to boost mode, clearing the conflict for better resources (HP core)

quickly. During this time, the performance of the thread executing on non-affine core

is improved by opting for the boost mode within the LP core. Once the conflict clears

up, the latter thread is migrated to HP core. These cases clearly substantiate the

need for dynamically changing the voltage/frequency of the cores besides swapping

threads.

vs. DVFA-only : The voltage and frequency of the cores are chosen so as

to maximize throughput/Watt in DVFA-only baseline. In contrast to the previ-

ous two baselines, there were few benchmark combinations (e.g., {adpcm,adpcm},

{bitcount,adpcm} in Figure 9.5) out of the 120 for which our scheme performed worse

than DVFA-only scheme. We have already observed a probable reason for this in

Section 8.7. Nevertheless, these worst case scenarios were infrequent (only 10 out

of 120 combinations resulted in degradation >3%) and even in the worst case, the

observed IPS/Watt degradation was only about 9.5%. On an average, considering all

69



the 120 combinations, the proposed PDRF achieved a throughput/Watt improvement

of about 8% over the DVFA-only baseline.

We also analyzed the cases for which our scheme performs much better than

the DVFA-only scheme. We observed that most of such cases were for symmetric

workload combinations (both the threads having affinity for the same core-type, e.g.,

{gcc,gcc}, {intStress,bitcount} - both are integer intensive). By swapping threads,

our scheme efficiently shares the affine resource (preferred core-type) while one of

the threads is forced to execute on the non-affine core throughout its execution in

DVFA-only scheme. Hence, there is a definite need for a scheme to support thread

swapping besides DVFA.

Furthermore, we analyzed the best 10 cases for which our scheme achieves max-

imum IPS/Watt speedup over swap-only (see Figure 9.4) and DVFA-only (see Fig-

ure 9.5) baselines. We noticed that there were only 2 benchmarks combinations

({crc32,cpu} and {cpu,fbench}) that were in common between the two. This is very

encouraging for our proposed scheme as it clearly shows that the benefits of dynamic

thread swapping and DVFA are mostly non-overlapping. As a result, different kinds

of benchmark combinations could benefit from either of them, indicating the po-

tential benefits of schemes (like the one proposed) that seamlessly combine the two

approaches.

70



CHAPTER 10

CONCLUSIONS

We have presented a novel dynamic reconfiguration framework (DRF) for AMPs

which strives to maximize performance/power of the applications. The proposed DRF

is equipped with dynamic resource allocation (DRA), and voltage/frequency adapta-

tion (DVFA) capabilities. Two approaches were explored for the proposed DRF: one

(RDRF) works based on rules established offline and the other (PDRF) by predicting

online the expected performance/power of the thread at different voltage/frequency

levels on all the available core-types in the AMP. We have devised an unified trigger

mechanism using hardware performance counters (HPCs) for both RDRF and PDRF.

To illustrate our approach, we considered a dual-core: one core with support for

strong integer code execution and another core that could handle floating-point oper-

ations efficiently. Aligning with the time-dependent behavior of the applications and

their computational demands, our proposed DRF dynamically swaps the executing

threads or morphs the cores at runtime by realigning resources of the given baseline

cores to form a strong and a weak core. In addition, appropriate voltage/frequency

levels are chosen dynamically to maximize performance/power of the applications.

We have demonstrated the potential of PDRF for varied baseline core architectures.

Our results show that proposed DRF achieves significant throughput/Watt benefits

over different baselines.

71



CHAPTER 11

FUTURE WORK

We discuss in this chapter the possible extensions to this thesis.

• Adaptive fetch throttling: Hardware counters were extensively used in this thesis

to trigger reconfigurations and predict performance/power. One possible future

work is to leverage them for an adaptive fetch throttling mechanism. When

the difference between the Fetched instructions and the Retired instructions

counters is large or when the value of Branch misprediction counter is high,

then it is a clear indication that the processor is executing many speculative

instructions. Execution of these instructions unnecessarily burns more power

without contributing to the actual computation. Hence, under such scenarios

it may be beneficial from a power perspective to dynamically reduce the fetch

width.

• Phase-based performance/power prediction: Performance/power prediction was

done using a single trained expression for all application phases in this thesis.

Different performance/power expressions could be trained for different program

phases which could then be used online. Employing such a phase-based perfor-

mance/power models may improve the accuracy of the prediction even further.

• Opportunistic execution outsourcing: With very minimal modification to the

hardware support for core morphing (see Figure 6.4), the proposed DRA mecha-

nism could be extended to support execution outsourcing. When the processor is

stalled due to the lack of execution resources, the subsequent instructions could

72



make use of the (execution) resources of the other core if they are available.

Such opportunistic execution outsourcing could be deployed for performance

improvement or even for fault tolerance.

73



BIBLIOGRAPHY

[1] The Standard Performance Evaluation Corporation (Spec CPI2000 suite).
http://www/specbench.org/osg/cpu2000.

[2] The Nehalem Preview: Intel Does It Again. http://www.anandtech.com/show/-
2542/5.

[3] Third generation Intel Core Processors. http://www.intel.com/content/dam/-
www/public/us/en/documents/datasheets/3rd-gen-core-family-mobile-vol-1-
datasheet.pdf.

[4] Intel Corporation. Intel Turbo Boost Technology in Intel Core Microarchitecture
(Nehalem) Based Processors, White Paper, (2008).

[5] Balakrishnan, S., Rajwar, R., Upton, M., and Lai, Konrad. The impact of per-
formance asymmetry in emerging multicore architectures. In Computer Archi-
tecture, 2005. ISCA ’05. Proceedings. 32nd International Symposium on (2005),
pp. 506–517.

[6] Becchi, M., and Crowley, P. Dynamic thread assignment on heterogeneous mul-
tiprocessor architectures. In Proceedings of the 3rd conference on Computing
frontiers (2006), CF ’06, ACM, pp. 29–40.

[7] Brooks, D., and Martonosi, M. Dynamic thermal management for high-
performance microprocessors. In High-Performance Computer Architecture,
2001. HPCA. The Seventh International Symposium on (2001), pp. 171–182.

[8] Brooks, D., Tiwari, V., and Martonosi, M. Wattch: a framework for
architectural-level power analysis and optimizations. In Computer Architecture,
2000. Proceedings of the 27th International Symposium on (2000), pp. 83–94.

[9] Chen, J., and John, L.K. Efficient program scheduling for heterogeneous
multi-core processors. In Design Automation Conference, 2009. DAC ’09. 46th
ACM/IEEE (2009), pp. 927–930.

[10] Chen, T., Hsu, C., and Wu, S. Flexible heterogeneous multicore architectures for
versatile media processing via customized long instruction words. Circuits and
Systems for Video Technology, IEEE Transactions on 15, 5 (2005), 659–672.

[11] Contreras, G., and Martonosi, M. Power prediction for Intel XScale reg; proces-
sors using performance monitoring unit events. In Low Power Electronics and
Design, 2005. ISLPED ’05. Proceedings of the 2005 International Symposium on
(2005), pp. 221–226.

74



[12] Das, A., Rodrigues, R., Koren, I., and Kundu, S. A study on performance
benefits of core morphing in an asymmetric multicore processor. In Computer
Design (ICCD), 2010 IEEE International Conference on (2010), pp. 17–22.

[13] Dhodapkar, A.S., and Smith, J.E. Comparing program phase detection tech-
niques. In Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual
IEEE/ACM International Symposium on (2003), pp. 217–227.

[14] Fog, A. The microarchitecture of Intel, AMD and VIA CPU. Tech. rep., Copen-
hagen University College of Engineering.

[15] Foley, D., Steinman, M., Branover, A., Smaus, G., Asaro, A., Punyamurtula,
S., and Bajic, L. AMD’s “LLANO” FUSION APU, Hot Chips (2011), Paper:
HC23.19.930.

[16] Ghasemazar, M., Pakbaznia, E., and Pedram, M. Minimizing energy consump-
tion of a chip multiprocessor through simultaneous core consolidation and dvfs.
In Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Sym-
posium on (2010), pp. 49–52.

[17] Gibson, D., and Wood, D. A. Forwardflow: a scalable core for power-constrained
CMPs. In 37th Annual International Symposium on Computer Architecture
(2010), ISCA ’10, pp. 14–25.

[18] Greenhalgh, P. Big. little processing with arm cortex-a15 & cortex-a7. ARM
White Paper (2011).

[19] Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., and
Brown, R.B. MiBench: A free, commercially representative embedded bench-
mark suite. In Workload Characterization, 2001. WWC-4. 2001 IEEE Interna-
tional Workshop on (2001), pp. 3–14.

[20] Held, J., Bautista, J., and Koehl, S. From a Few Cores to Many: A Tera-scale
Computing Research Review, (2006).

[21] Heller, L. C., and Farrell, M.S. Millicode in an IBM zSeries processor. IBM
Journal of Research and Development 48, 3.4 (2004), 425–434.

[22] Hill, M.D., and Marty, M.R. Amdahl’s Law in the Multicore Era. Computer 41,
7 (2008), 33–38.

[23] Ipek, E., Kirman, M., Kirman, N., and Martinez, J. F. Core fusion: accommo-
dating software diversity in chip multiprocessors. In 34th Annual International
Symposium on Computer Architecture (2007), ISCA ’07, pp. 186–197.

[24] Keramidas, G., Spiliopoulos, V., and Kaxiras, S. Interval-based models for run-
time DVFS orchestration in superscalar processors. In 7th ACM International
Conference on Computing Frontiers (2010), CF ’10, pp. 287–296.

75



[25] Khan, O., and Kundu, S. A model to exploit power-performance efficiency in
superscalar processors via structure resizing. In 20th Symposium on Great Lakes
Symposium on VLSI (2010), GLSVLSI ’10, pp. 215–220.

[26] Khan, O., and Kundu, S. A self-adaptive scheduler for asymmetric multi-cores.
In Proceedings of the 20th symposium on Great lakes symposium on VLSI (2010),
ACM, pp. 397–400.

[27] Khan, O., and Kundu, S. Thread Relocation: A Runtime Architecture for Tol-
erating Hard Errors in Chip Multiprocessors. Computers, IEEE Transactions on
59, 5 (2010), 651–665.

[28] Khan, O., and Kundu, S. Microvisor: A Runtime Architecture for Thermal
Management in Chip Multiprocessors. T. HiPEAC 4 (2011), 84–110.

[29] Kim, C., Sethumadhavan, S., Gulati, D., Burger, D., Govindan, M.S., Ran-
ganathan, N., and Keckler, S.W. Composable Lightweight Processors. In
40th Annual IEEE/ACM International Symposium on Microarchitecture, 2007
(2007).

[30] Kim, W., Gupta, M.S., Wei, Gu-Yeon, and Brooks, D. System level analysis
of fast, per-core DVFS using on-chip switching regulators. In IEEE 14th Inter-
national Symposium on High Performance Computer Architecture, 2008. HPCA
2008 (2008).

[31] Koufaty, D., Reddy, D., and Hahn, S. Bias scheduling in heterogeneous multi-
core architectures. In Proceedings of the 5th European conference on Computer
systems (2010), EuroSys ’10, ACM, pp. 125–138.

[32] Kumar, R., Farkas, K.I., Jouppi, N.P., Ranganathan, P., and Tullsen, D.M.
Single-ISA heterogeneous multi-core architectures: the potential for processor
power reduction. In Microarchitecture, 2003. MICRO-36. Proceedings. 36th An-
nual IEEE/ACM International Symposium on (2003), pp. 81–92.

[33] Kumar, R., Tullsen, D. M., and Jouppi, N. P. Core architecture optimization for
heterogeneous chip multiprocessors. In 15th International Conference on Parallel
Architectures and Compilation Techniques (2006), PACT 2006, pp. 23–32.

[34] Kumar, R., Tullsen, D.M., Ranganathan, P., Jouppi, N.P., and Farkas, K.I.
Single-ISA heterogeneous multi-core architectures for multithreaded workload
performance. In Computer Architecture, 2004. Proceedings. 31st Annual Inter-
national Symposium on (2004), pp. 64–75.

[35] Lee, C., Potkonjak, M., and Mangione-Smith, W.H. Mediabench: a tool for
evaluating and synthesizing multimedia and communications systems. In Mi-
croarchitecture, 1997. Proceedings., Thirtieth Annual IEEE/ACM International
Symposium on (1997), pp. 330–335.

76



[36] Li, Y., Skadron, K., Brooks, D., and Hu, Zhigang. Performance, energy, and ther-
mal considerations for SMT and CMP architectures. In High-Performance Com-
puter Architecture, 2005. HPCA-11. 11th International Symposium on (2005),
pp. 71–82.

[37] Morad, T., Weiser, U., and Kolodny, A. ACCMP - Assymetric Cluster Chip
Multi-Processing. In CCIT Technical Report 488, (2004).

[38] Najaf-abadi, H.H., Choudhary, N.K., and Rotenberg, E. Core-Selectability in
Chip Multiprocessors. In Parallel Architectures and Compilation Techniques,
2009. PACT ’09. 18th International Conference on (2009), pp. 113–122.

[39] Park, J., Shin, D., Chang, N., and Pedram, M. Accurate modeling and calcula-
tion of delay and energy overheads of dynamic voltage scaling in modern high-
performance microprocessors. In Low-Power Electronics and Design (ISLPED),
2010 ACM/IEEE International Symposium on (2010), pp. 419–424.

[40] Pericas, M., Cristal, A., Cazorla, F.J., Gonzalez, R., Jimenez, D.A., and Valero,
M. A Flexible Heterogeneous Multi-Core Architecture. In 16th International
Conference on Parallel Architectures and Compilation Techniques, 2007. PACT
2007 (2007).

[41] Renau, Jose. SESC Simulator, http://sesc.sourceforge.net., (2005).

[42] Rodrigues, R., Annamalai, A., Koren, I., and Kundu, S. Improving performance
per watt of asymmetric multi-core processors via online program phase classifi-
cation and adaptive core morphing. ACM Trans. Des. Autom. Electron. Syst.
18, 1 (Jan. 2013), 5:1–5:23.

[43] Rotem, E., Naveh, A., Rajwan, D., Ananthakrishnan, A., and Weissmann, E.
Power management architecture of the 2nd generation Intel Core microarchitec-
ture, formerly codenamed Sandy Bridge, Hot Chips (2011), Paper: HC23.19.920.

[44] Saez, J. C., Prieto, M., Fedorova, A., and Blagodurov, S. A comprehensive
scheduler for asymmetric multicore systems. In Proceedings of the 5th European
conference on Computer systems (2010), EuroSys ’10, ACM, pp. 139–152.

[45] Salverda, P., and Zilles, C. Fundamental performance constraints in horizon-
tal fusion of in-order cores. In IEEE 14th International Symposium on High
Performance Computer Architecture, 2008. HPCA 2008 (2008).

[46] Shelepov, D., Saez, J. C., Jeffery, S., Fedorova, A., Perez, N., Huang, Zhi Feng,
Blagodurov, S., and Kumar, V. Hass: a scheduler for heterogeneous multicore
systems. SIGOPS Oper. Syst. Rev. 43, 2 (Apr. 2009), 66–75.

[47] Sherwood, T., Sair, S., and Calder, B. Phase tracking and prediction. In Com-
puter Architecture, 2003. Proceedings. 30th Annual International Symposium on
(2003), pp. 336–347.

77



[48] Shivakumar, P., and Jouppi, N. P. Cacti 3.0: An Integrated Cache Timing,
Power, and Area Model. Tech. rep., (2001).

[49] Singh, K., Bhadauria, M., and McKee, S. A. Real time power estimation and
thread scheduling via performance counters. SIGARCH Comput. Archit. News
37, 2 (July 2009), 46–55.

[50] Srinivasan, S., Zhao, L., Illikkal, R., and Iyer, R. Efficient interaction between
OS and architecture in heterogeneous platforms. SIGOPS Oper. Syst. Rev. 45,
1 (Feb. 2011), 62–72.

[51] Tarjan, D., Boyer, M., and Skadron, K. Federation: Repurposing scalar cores
for out-of-order instruction issue. In Design Automation Conference, 2008. DAC
2008. 45th ACM/IEEE (2008), pp. 772–775.

[52] Vasan, A. Performance and power evaluation by Resource Sizing in an Asym-
metric Multicore system. Tech. rep., University of Massachusetts at Amherst.

[53] Winter, J. A., Albonesi, D. H., and Shoemaker, C. A. Scalable thread scheduling
and global power management for heterogeneous many-core architectures. In 19th
International Conference on Parallel Architectures and Compilation Techniques
(2010), PACT 2010, pp. 29–40.

[54] Zhang, X., Shen, K., Dwarkadas, S., and Zhong, R. An evaluation of per-chip
nonuniform frequency scaling on multicores. In 2010 USENIX Conference on
USENIX Annual Technical Conference (2010), USENIXATC’10, pp. 19–19.

78


