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Abstract

Eligibility traces have been shown to speed re-
inforcement learning, to make it more robust
to hidden states, and to provide a link between
Monte Carlo and temporal-difference methods.
Here we generalize eligibility traces tooff-policy
learning, in which one learns about a policy dif-
ferent from the policy that generates the data.
Off-policy methods can greatly multiply learn-
ing, as many policies can be learned about from
the same data stream, and have been identified
as particularly useful for learning about subgoals
and temporally extended macro-actions. In this
paper we consider the off-policy version of the
policy evaluation problem, for which only one
eligibility trace algorithm is known, a Monte
Carlo method. We analyze and compare this and
four new eligibility trace algorithms, emphasiz-
ing their relationships to the classical statistical
technique known asimportance sampling. Our
main results are 1) to establish the consistency
and bias properties of the new methods and 2) to
empirically rank the new methods, showing im-
provement over one-step and Monte Carlo meth-
ods. Our results are restricted to model-free,
table-lookup methods and to offline updating (at
the end of each episode) although several of the
algorithms could be applied more generally.

1. Introduction

In reinforcement learning, we generally learn from expe-
rience, that is, from the sequence of states, actions, and
rewards generated by the agent interacting with its environ-
ment. This data is affected by the decision-making policy
used by the agent to select its actions, and thus we often
end up learning something that is a function of the agent’s
policy. For example, the common subproblem ofpolicy
evaluationis to learn the value function for the agent’s pol-

icy (the function giving the expected future reward avail-
able from each state–action pair). In general, however, we
might want to learn about policies other than that currently
followed by the agent, a process known asoff-policy learn-
ing. For example, 1-step Q-learning is often used in an
off-policy manner, learning about the greedy policy while
the data is generated by a slightly randomized policy that
ensures exploration.

Off-policy learning is especially important for research on
the use of temporally extended actions in reinforcement
learning (Kaelbling, 1993; Singh, 1992; Parr, 1998; Di-
etterich, 1998; Sutton, Precup & Singh, 1999). In this case,
we are interested in learning about many different policies,
each corresponding to a different macro-action, subgoal,
or option. Off-policy learning enables the agent to use its
experience to learn about the values and models of all the
policies in parallel, even though it can follow only one pol-
icy at a time (Sutton, Precup & Singh, 1998).

In this paper we consider the natural generalization of the
policy evaluation problem to the off-policy case. That
is, we consider two stationary Markov policies, one used
to generate the data, called thebehavior policy, and one
whose value function we seek to learn, called thetarget
policy. The two policies are completely arbitrary except
that the behavior policy must besoft, meaning that it must
have a non-zero probability of selecting every action in
each state. (The last method we consider has weaker re-
quirements, not even requiring that the behavior policy be
stationary, only non-starving.) This policy evaluation prob-
lem is a particularly clear and pure case of off-policy learn-
ing. Whatever we learn about it we expect to elucidate, if
not directly transfer to, the problem of learning value func-
tions and models of temporally extended macro-actions.

There are few existing model-free algorithms1 that apply
1In this paper we restrict attention to methods that learn di-

rectly from experience rather than form an explicit model ofthe
environment. Such model-free methods have been emphasizedin
reinforcement learning because of their simplicity and robustness
to modeling errors and assumptions.



to off-policy policy evaluation. There is a natural one-step
method, TD(0), but the more general TD(λ), for λ > 0,
fails because it includes some effect of multi-step transi-
tions, which are contaminated by the behavior policy and
not compensated for in any way. The only prior method
we know of that uses multi-step transitions appropriately
is the weighted Monte Carlo method described briefly by
Sutton and Barto (1998). There are at least three varia-
tions of Q-learning which use eligibility traces, Watkins’s
(1989) Q(λ), Peng and Williams’ (1996) Q(λ), and naive
Q(λ) (Sutton & Barto, 1998). Like 1-step Q-learning, these
are all off-policy methods, but they apply only to the special
case in which the target policy is deterministic and chang-
ing (to always be greedy with respect to the current value
function estimate). These methods cannot be applied di-
rectly to our simpler but more general policy evaluation
problem, although two of our four new methods reduce to
Watkins’s Q(λ) in the special case in which the target pol-
icy is deterministic.

2. Reinforcement Learning (MDP) Notation

In this paper we consider the episodic framework, in which
the agent interacts with its environment in a sequence of
episodes, numberedm = 1;2;3; : : :, each of which con-
sists of a finite number of time steps,t = 0;1;2; : : : ;Tm.
The first state of each episode,s0 2 S is chosen accord-
ing to some fixed distribution. Then, at each stept, the
agent perceives the state of the environment,st 2 S, and
on that basis chooses an action,at 2 A. In response toat ,
the environment produces, one step later, a numerical re-
ward, rt+1 2 ℜ, and a next state,st+1. If the next state
is the specialterminal state, then the episode terminates
at timeTm = t + 1. We assume here thatS andA are fi-
nite and that the environment is completely characterized
by one-step state-transition probabilities,pa

ss0 , and one-step
expected rewards,ra

s, for all s;s0 2 Sanda2 A.

A stationary way in which the agent might behave, orpol-
icy, is specified by a mapping from states to probabilities of
taking each action:π : S�A! [0;1℄. The value of taking
actiona in states under policyπ, denotedQπ(s;a), is the
expected discounted future reward starting ins, taking a,
and henceforth followingπ:

Qπ(s;a) def= Eπ

n
r1+ γr2+ � � �+ γT�1rT

��� s0 = s;a0 = a
o:

where 0� γ � 1 is a discount-rate parameter andT is the
time of termination. The functionQπ : S�A!ℜ is known
as theaction-value functionfor policy π. The problem
we consider in this paper is that of estimatingQπ for an
arbitrary target policyπ, given that all data is generated
by a differentbehavior policy b, whereb is soft, meaning
b(s;a)> 0;8s2 S;a2 A.

3. Importance Sampling Algorithms

One way of viewing the special difficulty of off-policy
learning is that it is a mismatch of distributions—we would
like data drawn from the distribution of the target policy but
all we have is data drawn from the distribution of the be-
havior policy. Importance sampling(e.g., see Rubinstein,
1981) is a classical technique for handling just this kind of
mismatch. In particular, it is for estimating the expected
value of a random variablex with distributiond from sam-
ples, when the samples are drawn from another distribution
d0. For example, the target distributiond could be normal,
while the sampling distributiond0 is uniform, as below.

x

d

d’

Figure 1.Different target and sampling distributions

In its classical form, importance sampling is based on the
following simple observation:

Edfxg = Z
x
xd(x)dx = Z

x
x

d(x)
d0(x)d0(x)dx= Ed0�x

d(x)
d0(x)�;

which leads to the importance sampling estimator,� 1
n

n

∑
i=1

xi
d(xi)
d0(xi) (1)

where thexi are samples selected according tod0. This es-
timator computes the average of the sample values, where
each sample is weighted differently based on the ratio of its
likelihood of occurring under the two distributions. This
weighting gives more importance to samples that occur
rarely under the sampling distributiond0 but occur fre-
quently under the target distributiond. If d andd0 are the
same, then all the samples have a weight of 1, and the es-
timator becomes the usual arithmetic average of the sam-
ples. The importance sampling estimator (1) isconsistent,
meaning it converges with probability one toEdfxg as the
number of samples goes to infinity, andunbiased, mean-
ing its expected value after any number of examples is also
Edfxg (Rubinstein, 1981).

A less well known variant of this technique isweighted im-
portance sampling, which performs a weighted average of
the samples, with weightsd(xi)

d0(xi) . The weighted importance
sampling estimator is:

∑n
i=1xi

d(xi)
d0(xi)

∑n
i=1

d(xi)
d0(xi) :



This estimator is a consistent but biased estimator ofEdfxg
(Rubinstein, 1981). Nevertheless, this estimator is often
faster and more stable in practice than (1). Intuitively, this
is due to the fact that, if an unlikely event occurs, its weight
will be very large and will cause a large variation in the con-
ventional estimator; but in the weighted estimator, the large
weight appears in the denominator as well, which smoothes
the variation.

Now consider applying importance sampling to off-policy
policy evaluation in MDPs. The samples come in the form
of episodes, which are complete sequences of states, ac-
tions and rewards, ending in a terminal state. We want to
estimate the action valueQπ(s;a) for an arbitrary states
and actiona. Let M be the number of episodes contain-
ing state-action pair(s;a), and lettm be the first time when(st ;at) = (s;a) in themth of these episodes. Then we define
thefirst-visit importance sampling estimatorof Qπ(s;a) as

QIS(s;a) def= 1
M

M

∑
m=1

Rmwm; (2)

whereRm is the return following(s;a) in episodem,

Rm
def= rtm+1+ γrtm+2+ : : :+ γTm�tm�1rTm;

and wm is the importance sampling weight assigned to
episodem,

wm
def= πtm+1

btm+1

πtm+2

btm+2
: : : πTm�1

bTm�1
;

whereπt andbt are short forπ(st ;at) andb(st ;at) respec-
tively. Similarly, we define theweighted importance sam-
pling estimator(Sutton & Barto, 1998) as

QISW(s;a) def= ∑M
m=1Rmwm

∑M
m=1wm

: (3)

4. Per-Decision Algorithms

The estimators defined above all consider complete returns
Rm without breaking down into their constituent rewards;
this is the property that leads to their being called Monte
Carlo methods. An estimator that used the way returns
break down into rewards could potentially be more efficient
than these, or more easily implemented on an incremen-
tal, step-by-step basis. In this section we present a new al-
gorithm that performs importance sampling weightings for
each decision step along the way.

Let us examine the termRmwm from equations (2) and (3):

Rmwm = Tm

∑
i=tm+1

γi�tm�1r i
πtm+1

btm+1
� � � πi�1

bi�1

πi

bi
� � � πTm�1

bTm�1
:

The terms of the sum can be naturally separated into two
parts, one containing theπb ratios fromtm+1 to i� 1, and

one containing the ratios fromi to Tm�1. Intuitively, the
weight on rewardr i should not depend on the future after
time i, only on the history to that point. This is the idea
behind theper-decision importance sampling estimator:

QPD(s;a) def= 1
M

M

∑
m=1

Tm�tm

∑
k=1

γk�1rtm+k

tm+k�1

∏
i=tm+1

πi

bi
:

This estimator weights each reward along a trajectory ac-
cording to the likelihood of the trajectory up to that point,
under the target and the behavior policy. If the target and
the behavior policy are the same, the estimator is simply
the average of the returns from each episode.

Theorem 1 The per-decision importance sampling esti-
mator QPD is a consistent unbiased estimator of Qπ.

The main idea of the proof (in the appendix) is to show
that the expected value of the per-decision estimatorQPD is
the same as the expected value of the classical importance
sampling estimatorQIS, which is known to be consistent
and unbiased.

We can also devise a weighted version of the per-decision
importance sampling algorithm, similar to the weighted
version of classical importance sampling. The idea is sim-
ply to divide the estimator by the sum of the weights during
each episode:

QPDW(s;a) def= ∑M
m=1 ∑Tm�tm

k=1 γk�1rtm+k ∏tm+k�1
i=tm+1

πi
bi

∑M
m=1 ∑Tm�tm

k=1 γk�1 ∏tm+k�1
i=tm+1

πi
bi

:
Thisweighted per-decision importance sampling estimator
is consistent but biased, just like the weighted importance
sampling estimatorQISW (Precup, 2000).

An eligibility-trace version of per-decision importance
sampling is shown in Algorithm 1. The algorithm main-
tains eligibility traces for each state-action pair in the usual
manner of temporal-difference (TD) algorithms. The only
difference is that here the eligibility trace is multipliedon
each step not just by a decay-rateλ, but also by an impor-
tance sampling factorπ(st ;at)

b(st ;at) . This factor corrects for the
effect of the behavior policy. The algorithm shown uses
online updating, meaning that the value estimates are up-
dated on every time step. Theofflineversion would make
the same increments and decrements as shown, but only at
the end of each episode. The changes are accumulated “on
the side” until the end of the episode, the value estimates
remaining unchanged until then. Under offline updating
the algorithm can be made to exactly implement the per-
decision importance sampling estimatorQPD by choosing
λ = 1 andα(s;a) = 1=n(s;a), wheren(s;a) is the number
of times state-action pairs;a has previously been updated.
Another choice forα causes the algorithm to exactly im-
plement the corresponding weighted estimator,QPDW. The



Algorithm 1 Online, Eligibility-Trace Version of Per-
Decision Importance Sampling

1. Update the eligibility traces for all states:

et(s;a) = et�1(s;a)γλ
π(st ;at)
b(st ;at) ; 8s;a

et(s;a) = 1; iff t = tm(s;a);
whereλ 2 [0;1℄ is an eligibility trace decay factor.

2. Compute the TD error:

δt = rt+1+ γ
π(st+1;at+1)
b(st+1;at+1)Qt(st+1;at+1)�Qt(st ;at)

3. Update the action-value function:

Qt+1(s;a) Qt(s;a)+αet(s;a)δt ; 8s;a
algorithm remains consistent under generalλ and general
decreasingα:

Theorem 2 For any soft, stationary behavior policy b, and
anyλ 2 [0;1℄ that does not depend on the action at , Algo-
rithm 1 with offline updating converges w.p.1 to Qπ, under
the usual step-size conditions onα.

The proof of the theorem (see appendix) is an application
of the general convergence theorem of Jaakkola, Jordan,
and Singh (1994).

5. Tree Backup Algorithm

The methods we have discussed so far all use the behav-
ior policy in their updates; they require that it be known,
Markov (purely a function of the current state), and ex-
plicitly represented as action probabilities. For complex
agents, however, none of these may be true. In this sec-
tion we consider a method that requires nothing of the be-
havior policy other than that it be non-starving, i.e., thatit
never reaches a time when some state-action pair is never
visited again. The behavior policy can be nonstationary,
non-Markov, and completely unknown; it does not appear
anywhere in the definition of the estimator or its algorithm.

The main idea of the new method, calledtree backup, is
illustrated in Figure 2. At each step along a trajectory, there
are several possible choices of action according to the target
policy. The one-step target combines the value estimates
for these actions according to their probabilities of being
taken under the target policy. At each step, the behavior
policy chooses one of the actions, and for that action, one
time step later, there is a new estimate of its value, based
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Figure 2.Backup diagram for the tree backup algorithm

Algorithm 2 Online, Eligibility-Traces Version of Tree
Backup

1. Update the eligibility traces for all states:

et(s;a) = et�1(s;a)γλπ(st ;at); 8s;a
et(s;a) = 1 iff t = tm(s;a)

whereλ2 [0;1℄ is an eligibility trace decay parameter.

2. Compute the TD error:

δt = rt+1+ γ ∑
a2A

π(st+1;a)Q(st+1;a)�Q(st ;at)
3. Update the action-value function:

Qt+1(s;a) Qt(s;a)+αet(s;a)δt ; 8s;a
on the reward received and the estimated value of the next
state. The tree backup algorithm then forms a new target,
using the old value estimates for the actions that were not
taken, and the new estimated value for the action that was
taken. This process can be iterated over many steps. If
we iterate it overn steps, we obtain then-step tree-backup
estimator:

QTB
n (s;a) def= 1

M

M

∑
m=1

γnQ(stm+n;atm+n) tm+n

∏
i=tm+1

πi+ tm+n

∑
k=tm+1

γk�tm+1
k�1

∏
i=tm+1

πi

 
rk+ γ ∑

a6=ak

π(sk;a)Q(sk;a)!
Forn= 1, the tree backup estimator reduces to the familiar
one-step TD estimator, TD(0).

The tree backup estimator also has a simple incremental
implementation using eligibility traces. An online version
of this implementation is given by Algorithm 2. In general,
λ can be chosen as a function of the statest , but cannot
depend on the actionat . A choice ofλ that is dependent
on the state can have empirical advantages. For example,
in the experiments reported in the next section, the eligibil-
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Figure 3.Average performance of all algorithms. On the left the behavior policy chose 50-50 from the two actions. On the right the
behavior policy chose with 80-20 probabilities exactly opposite those of the target policy.

ity traces were divided at each step by maxa π(st ;a). This
prevents the traces from decaying too quickly.

Theorem 3 For any non-starving behavior policy, for any
choice ofλ2 [0;1℄ that does not depend on the actions cho-
sen at each state, the offline version of Algorithm 2 con-
verges w.p.1 to Qπ, under the usual conditions onα.

The proof of this result (see appendix) relies on showing
a contraction property ofQTB

n , for anyn, and on applying
again the convergence theorem of Jaakkola et al. (1994).

6. Empirical Comparison

We obtained empirical results with the explicit estima-
tors, QIS, QISW, QPD, and QPDW, the one-step method,
TD(0), and a tree backup method using the normalization
by maxa π(st ;a) as discussed above. Except for the two
importance sampling methods, all were implemented using
the offline versions of Algorithms 1 and 2, using appropri-
ate settings forα andλ as discussed earlier. Not all estima-
tors have online versions (which are potentially more effi-
cient), so we used offline versions in all cases to facilitate
direct comparison of the underlying ideas. This choice is
also convenient because it results in entirely parameter-free
algorithms.

We compared the estimators on a suite of 100 randomly
constructed MDPs. Each MDP had 100 nonterminal states
and one terminal state. In each nonterminal state, there
were two actions available, and each action branched to
4 randomly selected next states with random probabilities
(the partition of unity was selected by picking three ran-
dom split points uniformly randomly from[0;1℄). The tar-
get policy was to select the first action with 80% proba-

bility and the second with 20%. The immediate rewards
were chosen uniformly randomly from[0;1℄. Two differ-
ent behavior policies were used. In theuniform behavior
case, both actions were equally likely, whereas in thedif-
ferent behaviorcase, the first action was selected with 20%
probability and the second with 80% probability, resulting
in a policy very different from the target policy. The initial
state of each episode was always the same. All the MDPs
we constructed in this way terminated with probability one;
we usedγ = 1. As a performance measure of each estima-
tor after each number of episodes, we used the mean square
error between the estimator and the true action values, aver-
aged over the 100 tasks and over the 200 state-action pairs
within each task (state-action pairs that had never been vis-
ited were excluded from the averages). This performance
measure is shown for up to 1000 episodes in the two panels
of Figure 3.

The importance sampling estimator was generally quite
slow and had high variance. The weighted version per-
formed much better. Per-decision importance sampling
was relatively efficient in the long run in the uniform behav-
ior case, but relatively slow in the different behavior case.
Surprisingly, the weighted version of per-decision impor-
tance sampling performed fairly poorly in both cases, al-
though still managing to beat the unweighted version in the
different behavior case. The tree backup estimator was uni-
formly the most efficient of all methods in the medium and
long term, beaten only by weighted importance sampling
by small amounts for small numbers of episodes.

In summary, our results strongly favor the tree backup al-
gorithm, because of its superior overall performance and
because of its weaker requirements of the behavior policy.



7. Unifying Tree Backup and Per-Decision

In order to understand better the two multi-step TD al-
gorithms (tree backup and per-decision importance sam-
pling), consider the full trajectory tree presented in Figure
4. The root of the tree is a state-action pair, and the tree con-
tains all the possible states and actions at each point. States
are represented by hollow circles, and actions are repre-
sented by filled circles. One trajectory through the tree can
be obtained by sampling the states at each ramification ac-
cording to the environment’s transition probabilities, and
by sampling actions according to the behavior policy.

Both multi-step algorithms do backups along such trajecto-
ries. The per-decision importance sampling algorithm uses
the actual rewards obtained during the trajectory. Because
the sampling at each action ramification is done according
to the behavior policy probabilities, the importance sam-
pling correction is necessary to ensure correct estimates.
The tree backup algorithm considers all possible actions at
each step, not just the one taken. It backs up values accord-
ing to a cut like the one represented with the dotted line
in Figure 4. Because all action choices are considered in
the backup, the convergence is guaranteed for any behavior
policy that is non-starving.

This interpretation suggests that the two algorithms can be
combined, without losing the convergence guarantees. If
at a given state, the behavior policy is Markov and it is
known, we can use per-decision importance sampling. If
the behavior is unknown and/or non-Markov, we can use
the tree backup algorithm. This mixture could ensure faster
and more stable error reduction than either algorithm alone.
We have not yet explored this idea empirically.

The two multi-step TD algorithms also have an interesting
relationship to multi-step Q-learning. In their control ver-
sion, both algorithms cut the eligibility trace whenever an
exploratory action is taken. Their updates are equivalent to
Watkins’s Q(λ) algorithm.
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Figure 4.Full trajectory tree for an MDP

8. Conclusions

In this paper we presented four novel algorithms for us-
ing eligibility traces in off-policy learning. We proved that
these algorithms converge to correct action values under
offline updating in the tabular case. These appear to be
the first convergence results for multi-step off-policy learn-
ing. We also showed that the tree backup algorithm con-
verges correctly for non-stationary and non-Markov behav-
ior policies, as long as they are non-starving. This promis-
ing algorithm also performed best in our empirical results.
Preliminary results have shown that it can speed learning
about macro-actions compared to one-step methods (Pre-
cup, 2000).
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Appendix

Proof of Theorem 1:
We know that the classical importance sampling estimator
QIS is consistent and unbiased:

E

( 
T�t

∑
k=1

γk�1rt+k

!
T�1

∏
i=t+1

πi

bi
j st = s;at = a;b)= Qπ(s;a):

We will show that the per-decision importance sampling
estimatorQPD has the same expected value asQIS. Let us
move the importance sampling correction inside the sum,
and examine the expectation for thek-th term:

E

(
γk�1rt+k

T�1

∏
i=t+1

πi

bi
j st = s;at = a;b)== E

�
γk�1rt+k

πt+1

bt+1
� � � πt+k�1

bt+k�1
j st ;at ; : : :st+k�1;at+k�1

��E�πt+k

bt+k
� � � πT�1

bT�1
j st ;at ; : : :st+k;at+k;b�:

Since the underlying environment is an MDP, the second
factor can be re-written as:

E

�
πt+k

bt+k
� � � πT�1

bT�1
j st+k;at+k;b�:

The expected value of this term is 1. Therefore,

E

( 
T�t

∑
k=1

γk�1rt+k

!
T�1

∏
i=t+1

πi

bi
j st = s;at = a;b)=

E

(
T�t

∑
k=1

γk�1rt+k

t+k�1

∏
i=t+1

πi

bi
j st = s;at = a;b)

which concludes the proof.�
Proof of Theorem 2:
The proof is structured in two stages. First, we consider the
corrected truncated return corresponding toQPD. The cor-
rected truncated return sums the rewards obtained from the
environment for onlyn steps, then uses the current estimate
of the value function to approximate the remaining value:

R(n)
t = n

∑
k=1

γk�1rt+k

t+k�1

∏
l=t+1

πl

bl
+ γnQ(st+n;at+n) t+n�1

∏
l=t+1

πl

bl

We need to show thatR(n)
t �Qπ is a contraction mapping in

the max norm. If this is true for anyn, then by applying the
general convergence theorem, then-step return converges
to Qπ. Then any convex combination will also converge to
Qπ. For example, any combination using aλ parameter in
the style of eligibility traces will converge toQπ.

Let Ω(s;a;k) denote the set of all possible trajectories ofk
state-action pairs starting with(s;a):
Ω(s;a;k) = fhs0;a0;s1;a1; : : :sk�1;ak�1ijs0 = s;a0 = ag;

and let ω denote any such trajectory:
ω = hs0;a0;s1;a1; : : :sk�1;ak�1i. Then the expected value
of the corrected truncated return for state-action(s;a) can
be expressed as follows:

E
n

R(n)
t j st = s;at = a;bo=

n

∑
k=1

∑
ω2Ω(s;a;k)Prfω j s0 = s;a0 = a;bgγk�1rk
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∏
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πl
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ωi2Ω(s;a;n)Prfω j s0 = s;a0 = a;bgγnQ(sn;an)n�1

∏
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πl

bl

n

∑
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∑
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∏
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p
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sl�1sl b(sl ;al )!γk�1rk
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∏
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πl
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ω2Ω(s;a;n) n�1

∏
l=1

p
al�1
sl�1sl b(sl ;al )!γnQ(sn;an)n�1

∏
l=1

πl

bl= n

∑
k=1

γk�1 ∑
ω2Ω(s;a;k) rak�1
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k�1

∏
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p
al�1
sl�1sl π(sl ;al )+γn ∑

ω2Ω(s;a;k)Q(sn;an)k�1

∏
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p
al�1
sl�1sl π(sl ;al )

By applying the Bellman equation forQπ iteratively n
times, we obtain:

Qπ(s;a) = n

∑
k=1

∑
ω2Ω(s;a;k)γk�1r

ak�1
sk�1

k�1

∏
l=1

p
al�1
sl�1sl π(sl ;al )+γn ∑

ω2Ω(s;a;k)Qπ(st+n;at+n) k

∏
l=1

p
al�1
sl�1sl π(sl ;al ):

Therefore,

max(s;a) jEnR(n)
t j bo�Qπ(s;a)j � γnmax(s;a) jQ(s;a)�Qπ(s;a)j:

This means that anyn-step return is a contraction in
the max norm, and therefore, by applying theorem 1 of
Jaakkola, Jordan and Singh (1994), it converges toQπ.

In the second stage, we show that by applying the updates
of Algorithm 1 forn successive steps, we perform the same



update as by using then-step returnR(n)
t . The eligibility

trace for state-action pair(s;a) can be re-written as:

et(s;a) = γt�tm
t

∏
l=tm+1

πl

bl
:

We have:

n

∑
k=1

et+k�1(s;a)δt+k�1(s;a) =
n

∑
k=1

γk�1

 
t+k�1

∏
l=t+1

πl

bl

!(rt+k + γ
π(st+k;at+k)
b(st+k;at+k)Q(st+k;at+k)�Q(st+k�1;at+k�1))= n

∑
k=1

γk�1rt+k

t+k�1

∏
l=t+1

πl

bl
+ γnQ(st+n;at+n) t+n�1

∏
l=t+1

πl

bl�Q(st ;at)= R(n)
t �Q(st ;at):

Since our algorithm is equivalent to applying a convex mix-
ture of n-step updates, and each update converges to cor-
rect Q-values, algorithm 1 converges to correct Q-values as
well. �
Proof of Theorem 3:
The proof is again in two stages. First we show that
E
�

QTB
n (s;a) j b	�Qπ is a contraction, in order to apply

again theorem 1 of Jaakkola, Jordan and Singh (1994). We
use a proof by induction.

Let Q be the current estimate of the value function. For
n= 1:

max(s;a) jE�QTB
1 (s;a) j b	�Qπ(s;a)j=

max(s;a) jra
s + γ ∑

s0;a0 pa
ss0π(s0;a0)Q(s0;a0)�ra

s� γ ∑
s0;a0 pa

ss0π(s0;a0)Qπ(s0;a0)j� γmax(s;a) jQ(s;a)�Qπ(s;a)j:
For the induction step, we assume that

max(s;a) jE�QTB
n (s;a) j b	�Qπ(s;a)j �� γmax(s;a) jQTB

n (s;a)�Qπ(s;a)j;
and we show the same holds forQTB

n+1(s;a). We can re-
write QTB

n+1(s;a) as follows:

QTB
n+1(s;a) = rt+1+ γ ∑

a02A

π(st+1;a0)�
Q(st+1;a0)(1� Ia0at+1

)+ Ia0at+1
QTB

n (st+1;a0)� ;

whereIa0at+1
is an indicator variable equal to 1 ifa0 = at+1

and 0 otherwise. Then we have:

max(s;a) jE�QTB
n+1(s;a) j b	�Qπ(s;a)j=

max(s;a) jra
s + γ∑

s0 pa
ss0 ∑

a0 π(s0;a0)
E
�(1� Ia0at+1

)Q(s0;a0)+ Ia0at+1
QTB

n (s0;a0) j b	�ra
s� γ∑

s0 pa
ss0 ∑

a0 π(s0;a0)Qπ(s0;a0)j= γmax(s;a) j∑s0 pa
ss0 ∑

a0 π(s0;a0)
E
�(1� Ia0at+1

)(Q(s0;a0)�Qπ(s0;a0))++Ia0at+1
(QTB

n (s0;a0)�Qπ(s0;a0))jb	 j� γmax(s;a) jQ(s;a)�Qπ(s;a)j:
By applying now theorem 1 of Jaakkola, Jordan and Singh
(1994), we can conclude that anyn-step return converges
to the correct action value.

Since all then-step returns converge toQπ, any convex lin-
ear combination ofn-step returns also converges toQπ. In
particular, we can use a fixedλ parameter, as is usually
done in TD(λ), or even aλ parameter dependent on the
state.

For the second part of the proof, we show that applying
Algorithm 2 (with λ = 1) for n steps is equivalent to using
QTB

n (s;a). The eligibility trace for state-action pair(s;a)
can be re-written as:

et+k(s;a) = γk
t+k

∏
l=t+1

π(sl ;al )
By adding and subtracting the weighted action value,
π(st+k;at+k)Q(st+k;at+k) for the action taken on each step
from the return, and regrouping, we have:

Q(st ;at)+ n

∑
k=1

γk�1
t+k�1

∏
l=t+1

π(sl ;al )(rt+k+γ ∑
a2A

π(st+k;a)Q(st+k;a)�Q(st+k�1;at+k�1))= Q(st ;at)+ n

∑
k=1

et+k(st ;at)δt+k;
which concludes the proof.�
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