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Abstract

Eligibility traces have been shown to speed re-
inforcement learning, to make it more robust
to hidden states, and to provide a link between
Monte Carlo and temporal-difference methods.
Here we generalize eligibility traces odf-policy
learning, in which one learns about a policy dif-
ferent from the policy that generates the data.
Off-policy methods can greatly multiply learn-
ing, as many policies can be learned about from
the same data stream, and have been identified
as particularly useful for learning about subgoals
and temporally extended macro-actions. In this
paper we consider the off-policy version of the
policy evaluation problem, for which only one
eligibility trace algorithm is known, a Monte
Carlo method. We analyze and compare this and
four new eligibility trace algorithms, emphasiz-
ing their relationships to the classical statistical
technique known asnportance sampling Our
main results are 1) to establish the consistency
and bias properties of the new methods and 2) to
empirically rank the new methods, showing im-
provement over one-step and Monte Carlo meth-
ods. Our results are restricted to model-free,
table-lookup methods and to offline updating (at
the end of each episode) although several of the
algorithms could be applied more generally.

1. Introduction

In reinforcement learning, we generally learn from expe-

icy (the function giving the expected future reward avail-
able from each state—action pair). In general, however, we
might want to learn about policies other than that currently
followed by the agent, a process knowrodfspolicy learn-

ing. For example, 1-step Q-learning is often used in an
off-policy manner, learning about the greedy policy while
the data is generated by a slightly randomized policy that
ensures exploration.

Off-policy learning is especially important for researah o
the use of temporally extended actions in reinforcement
learning (Kaelbling, 1993; Singh, 1992; Parr, 1998; Di-
etterich, 1998; Sutton, Precup & Singh, 1999). In this case,
we are interested in learning about many different policies
each corresponding to a different macro-action, subgoal,
or option. Off-policy learning enables the agent to use its
experience to learn about the values and models of all the
policies in parallel, even though it can follow only one pol-
icy at a time (Sutton, Precup & Singh, 1998).

In this paper we consider the natural generalization of the
policy evaluation problem to the off-policy case. That
is, we consider two stationary Markov policies, one used
to generate the data, called thehavior policy and one
whose value function we seek to learn, called theet
policy. The two policies are completely arbitrary except
that the behavior policy must sft meaning that it must
have a non-zero probability of selecting every action in
each state. (The last method we consider has weaker re-
guirements, not even requiring that the behavior policy be
stationary, only non-starving.) This policy evaluatiowlpsr

lem is a particularly clear and pure case of off-policy learn
ing. Whatever we learn about it we expect to elucidate, if
not directly transfer to, the problem of learning value func
tions and models of temporally extended macro-actions.

rience, that is, from the sequence of states, actions, and

rewards generated by the agent interacting with its environ

ment. This data is affected by the decision-making policy

There are few existing model-free algorithirthat apply

1in this paper we restrict attention to methods that learn di-

used by the agent to select its actions, and thus we oftefctly from experience rather than form an explicit modettus
end up learning something that is a function of the agent’snvironment. Such model-free methods have been emphasized

policy. For example, the common subproblempaflicy
evaluationis to learn the value function for the agent’s pol-

reinforcement learning because of their simplicity andusihess
to modeling errors and assumptions.



to off-policy policy evaluation. There is a natural onegste 3. | mportance Sampling Algorithms

method, TD(0), but the more general TD)( for A > 0, L . - .
fails because it includes some effect of multi-step transi-One way of viewing the special difficulty of off-policy

tions, which are contaminated by the behavior policy and_earning isthatitisa mismat(_:h o_fdistributions—we_would
not compensated for in any way. The only prior method“ke data dra\_Nn from the distribution of_the_tar_get policytbu
we know of that uses multi-step transitions appropriately?!! W€ have is data drawn from the distribution of the be-
is the weighted Monte Carlo method described briefly bynavior policy. Importance samplinge.g., see Rubinstein,
Sutton and Barto (1998). There are at least three varia19_81) ISa classma_l techn!qge for ha’f‘d"”.g just this kind of
tions of Q-learning which use eligibility traces, Watkigs’ mismatch. In partlcul_ar, It IS for_esfumgtmg the expected
(1989) QQ), Peng and Williams’ (1996) Q{, and naive value of a random variabbewith distributiond from sam-
Q(\) (Sutton & Barto, 1998). Like 1-step Q-learning, these ples, when the samples are d_ravyn from another distribution
are all off-policy methods, but they apply only to the specia 9 - FOr example, the target _dlsltr.|but|qmcould be normal,
case in which the target policy is deterministic and changVNile the sampling distributiod” is uniform, as below.

ing (to always be greedy with respect to the current value

function estimate). These methods cannot be applied di- d

rectly to our simpler but more general policy evaluation 7%"’

problem, although two of our four new methods reduce to
Watkins’s Q@) in the special case in which the target pol-
icy is deterministic.

X

Figure 1.Different target and sampling distributions

In its classical form, importance sampling is based on the

2. Reinforcement L earning (M DP) Notation TS .
following simple observation:

In this paper we consider the episodic framework, in which

the agent interacts with its environment in a sequence of Eq{x} = /xd(x)dx _ /Xd(X) d'(x)dx
episodes, numberesh = 1,2,3,..., each of which con- X x d'(X)

sists of a finite number of time steps=0,1,2,..., . d(x)

The first state of each episod®, € Sis chosen accord- = Ed’{xm}’

ing to some fixed distribution. Then, at each stephe

agent perceives the state of the environmeng S, and ~ Which leads to the importance sampling estimator,

on that basis chooses an actiapne A. In response tax, ~ 1 - “ d(x) )

the environment produces, one step later, a numerical re- ”i; Id’(Xa)

ward, rip1 € O, and a next states 1. If the next state

is the speciaterminal state then the episode terminates Where thex; are samples selected accordinglto This es-

at timeTy, =t + 1. We assume here th&tandA are fi-  timator computes the average of the sample values, where
nite and that the environment is completely characterizegach sample is weighted differently based on the ratio of its
by one-step state-transition probabilitip§,, and one-step likelihood of occurring under the two distributions. This

expected rewards, for all s;s € Sanda € A. weighting gives more importance to samples that occur

. i which th iaht beh ; rarely under the sampling distributiodf but occur fre-
A stationary way in which the agent might behavepol- guently under the target distributiah If d andd’ are the

icy, is specified by a mapping from states to probabilities Ofsame then all the samples have a weight of 1, and the es-
taking each actiontt: Sx A — [0,1]. The value of taking ' ’

. . . . timator becomes the usual arithmetic average of the sam-
actiona in states under policyr, denotedQ"™(s,a), is the

: © A ples. The importance sampling estimator (1¢dmsistent
expected discounted future reward startingsjiriaking a, meaning it converges with probability oneEa{x} as the
and henceforth followingt

number of samples goes to infinity, andbiased mean-
ing its expected value after any number of examples is also

Q(sa) def En{r1+yr2+ oyl o =sa = a}. Eq{x} (Rubinstein, 1981).

A less well known variant of this techniquevgighted im-
where 0< y < 1 is a discount-rate parameter afids the  portance samplingwhich performs a weighted average of
time of termination. The functio@™: Sx A— O isknown the samples, with Weightg%. The weighted importance
as theaction-value functiorfor policy . The problem sampling estimator is:
we consider in this paper is that of estimati@f for an
arbitrary target policym, given that all data is generated SN % dix)
by a differentbehavior policy bwhereb is soft, meaning de(_x‘).
b(s,a) > 0,¥se€ Sac A Zinzlﬁ




This estimator is a consistent but biased estimat&iygk} one containing the ratios frointo 1. Intuitively, the
(Rubinstein, 1981). Nevertheless, this estimator is ofterweight on reward; should not depend on the future after
faster and more stable in practice than (1). Intuitivelis th time i, only on the history to that point. This is the idea
is due to the fact that, if an unlikely event occurs, its weigh behind theper-decision importance sampling estimator
will be very large and will cause a large variation in the con-

. . . . . M Tm—t tm+k—1
ventional estimator; but in the weighted estimator, thgdar QPP(s,a) & 1 s mzm e o ml—l T
weight appears in the denominator as well, which smoothes M m=1 k=1 " i—tmr1 bi

the variation. , , . ,
This estimator weights each reward along a trajectory ac-

Now consider applying importance sampling to off-policy cording to the likelihood of the trajectory up to that point,
policy evaluation in MDPs. The samples come in the formynder the target and the behavior policy. If the target and
of episodes, which are complete sequences of states, agre behavior policy are the same, the estimator is simply
tions and rewards, ending in a terminal state. We want tahe average of the returns from each episode.

estimate the action valu@™(s,a) for an arbitrary states

and actiona. Let M be the number of episodes contain- Theorem 1 The per-decision importance sampling esti-
ing state-action paifs, a), and letty, be the first time when mator FP is a consistent unbiased estimator df.Q

(s,a) = (s,a) inthemth of these episodes. Then we define

thefirst-visit importance sampling estimatof Q(s,a) as  1he main idea of the proof (in the appendix) is to show
that the expected value of the per-decision estimatétis

the same as the expected value of the classical importance
sampling estimato®'S, which is known to be consistent
and unbiased.

def 1

M
Q%) E'G 3 Ravi @

whereRy, is the return following's, a) in episodem, ) ] ) .
We can also devise a weighted version of the per-decision

tmferm’ importance sampling algorithm, similar to the weighted

version of classical importance sampling. The idea is sim-
and wm is the importance sampling weight assigned toply to divide the estimator by the sum of the weights during
episodem, each episode:

def _
Rm = lps1+YWent2 +... + mi

def Thy+1 Tht2 Tp—-1 M Tm—tm k-1 tm+k—1 15
m = det Sme1 Y1 Y bk 1 B
Byt iz By 1 QM(s.a) & SIS G S

ZM zTTftm kal HFT+k71 il
whererg andb; are short form(s,a) andb(s,a;) respec- m=t k=l =tmt1 b
tively. Similarly, we define theveighted importance sam- Thisweighted per-decision importance sampling estimator
pling estimator(Sutton & Barto, 1998) as is consistent but biased, just like the weighted importance
sampling estimato®'SW (Precup, 2000).

) de def Emzl Rme

Q¥(sa W 3 An eligibility-trace version of per-decision importance
E'Tbl m sampling is shown in Algorithm 1. The algorithm main-
tains eligibility traces for each state-action pair in tisial
manner of temporal-difference (TD) algorithms. The only
The estimators defined above all consider complete returngifference is that here the eligibility trace is multiplied
Rm without breaking down into their constituent rewards; €ach step not just by a decay ratebut also by an impor-
this is the property that leads to their being called Montetance sampling factow This factor corrects for the
Carlo methods. An estimator that used the way returngffect of the behavior pollcy The algorithm shown uses
break down into rewards could potentially be more efficientonline updating meaning that the value estimates are up-
than these, or more easily implemented on an incremerdated on every time step. Thuéfline version would make
tal, step-by-step basis. In this section we present a new athe same increments and decrements as shown, but only at
gorithm that performs importance sampling weightings forthe end of each episode. The changes are accumulated “on
each decision step along the way. the side” until the end of the episode, the value estimates
remaining unchanged until then. Under offline updating
the algorithm can be made to exactly implement the per-
_ Im tne1, Tentl  TOo1T§ TG, 1 decision importance sampling estima®@f® by choosing
RoWm= 5 Y b 1 biib br A =1 anda(s,a) = 1/n(s,a), wheren(s, a) is the number
=t i " of times state-action pag a has previously been updated.
The terms of the sum can be naturally separated into tw@nother choice for causes the algorithm to exactly im-
parts, one containing thg ratios fromtm, 1 toi— 1, and  plement the corresponding weighted estima@®V. The

4. Per-Decision Algorithms

Let us examine the terlRwn, from equations (2) and (3):




Algorithm 1 Online, Eligibility-Trace Version of Per- (s,3)
Decision Importance Sampling

1. Update the eligibility traces for all states:

a(sa) = etl(s,a)vAEE:’:g, vs,a ¢
a(sa) = 1,iff t=tm(sa),

whereA € [0,1] is an eligibility trace decay factor.
Figure 2.Backup diagram for the tree backup algorithm

2. Compute the TD error:

Algorithm 2 Online, Eligibility-Traces Version of Tree
Qu(s+1,811) — Qu(s,a)  Backup

1. Update the eligibility traces for all states:

T(S+1,8+1)
=Mty
& o yb(5t+1, ay1)

3. Update the action-value function:
a(sa) = a-1(sayAn(s,a), Vsa
Qi(sa) < Q(sa)+aa(sa)d, Vsa a(sa) = 1ifft=ty(sa)

whereA € [0, 1] is an eligibility trace decay parameter.

algorithm remains consistent under genevand general 2. Compute the TD error:

decreasing!:
v &=ty Mig,a)Q(ssa) - Q(a,a)
ac

Theorem 2 For any soft, stationary behavior policy b, and
anyA € [0, 1] that does not depend on the actian Algo-
rithm 1 with offline updating converges w.p.1 t#,@nder
the usual step-size conditions an

3. Update the action-value function:

Q+1(s @) + Q(sa)+aea(sa)d, Vs,a

The proof of the theorem (see appendix) is an application
of the general convergence theorem of Jaakkola, Jordan,
and Singh (1994).

on the reward received and the estimated value of the next
] state. The tree backup algorithm then forms a new target,
5. Tree Backup Algorithm using the old value estimates for the actions that were not

The methods we have discussed so far all use the behataken, and the new estimated value for the action that was

: N : i . . Yaken. This process can be iterated over many steps. If
ior policy in their updates; they require that it be known, ; . :

. we iterate it oven steps, we obtain the-step tree-backup
Markov (purely a function of the current state), and ex-

plicitly represented as action probabilities. For complexesnmator

agents, however, none of these may be true. In this sec-, def 1 M tmtn
tion we consider a method that requires nothing of the be@n (5@ = M > VnQ(5tm+nvatm+”)_ [1 ™
havior policy other than that it be non-starving, i.e., that m=1 =t
never reaches a time when some state-action pair is never n tmth VH’“H k21 - (

visited again. The behavior policy can be nonstationary, . |_|
non-Markov, and completely unknown; it does not appear

anywhere in the definition of the estimator or its algorithm. Forn = 1, the tree backup estimator reduces to the familiar
one-step TD estimator, TD(0).

ety y H(SK,a)Q(&,a)>

k=tm+1 i=tm+1 aFay

The main idea of the new method, callede backupis
illustrated in Figure 2. At each step along a trajectoryrghe The tree backup estimator also has a simple incremental
are several possible choices of action according to thetarg implementation using eligibility traces. An online vensio
policy. The one-step target combines the value estimatesf this implementation is given by Algorithm 2. In general,
for these actions according to their probabilities of beingA can be chosen as a function of the statebut cannot
taken under the target policy. At each step, the behaviodepend on the actioa. A choice ofA that is dependent
policy chooses one of the actions, and for that action, onen the state can have empirical advantages. For example,
time step later, there is a new estimate of its value, baseh the experiments reported in the next section, the eligibi
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Figure 3.Average performance of all algorithms. On the left the bétrapolicy chose 50-50 from the two actions. On the right the
behavior policy chose with 80-20 probabilities exactly opite those of the target policy.

ity traces were divided at each step by mats,a). This  bility and the second with 20%. The immediate rewards

prevents the traces from decaying too quickly. were chosen uniformly randomly frof@, 1]. Two differ-
ent behavior policies were used. In theiform behavior

Theorem 3 For any non-starving behavior policy, for any case, both actions were equally likely, whereas indfie
choice ofA € [0, 1] that does not depend on the actions cho-ferent behaviocase, the first action was selected with 20%
sen at each state, the offline version of Algorithm 2 conpyopability and the second with 80% probability, resulting
verges w.p.1 to @ under the usual conditions an in a policy very different from the target policy. The initia

state of each episode was always the same. All the MDPs
Yve constructed in this way terminated with probability one;
we usedy = 1. As a performance measure of each estima-
tor after each number of episodes, we used the mean square
error between the estimator and the true action values; aver
6. Empirical Comparison aged over the 100 tasks and over the 200 state-action pairs
. - . - . within each task (state-action pairs that had never been vis
We obtained empirical results with the explicit estima- ited were excluded from the averages). This performance

IS OISW APD PDW )
tors, Q= Q, Q°7, and Q"™, the.one step method_, measure is shown for up to 1000 episodes in the two panels
TD(0), and a tree backup method using the normallzatloqnc Figure 3

by max 1(s,a) as discussed above. Except for the two

importance sampling methods, all were implemented using he importance sampling estimator was generally quite
the offline versions of Algorithms 1 and 2, using appropri-slow and had high variance. The weighted version per-
ate settings foa andX as discussed earlier. Not all estima- formed much better. Per-decision importance sampling
tors have online versions (which are potentially more effi-was relatively efficientin the long run in the uniform behav-

cient), so we used offline versions in all cases to facilitatgor case, but relatively slow in the different behavior case

direct comparison of the underlying ideas. This choice isSurprisingly, the weighted version of per-decision impor-

also convenient because it results in entirely parameg¢er-f tance sampling performed fairly poorly in both cases, al-
algorithms. though still managing to beat the unweighted version in the

different behavior case. The tree backup estimator was uni-

we ctom;t)a(;el\iDtr;e eétlmha;[\(/I)rDsPoE 3 ilcj)ge of thO .rar;d?r?%rmly the most efficient of all methods in the medium and
constructe S- =ac a nonterminai sta ef?)ng term, beaten only by weighted importance sampling

and one terminal stat_e. In each nonterm_inal state, therBy small amounts for small numbers of episodes.
were two actions available, and each action branched to
4 randomly selected next states with random probabilitiedn summary, our results strongly favor the tree backup al-
(the partition of unity was selected by picking three ran-gorithm, because of its superior overall performance and
dom split points uniformly randomly frorf0,1]). The tar-  because of its weaker requirements of the behavior policy.
get policy was to select the first action with 80% proba-

The proof of this result (see appendix) relies on showin
a contraction property o[ 8, for anyn, and on applying
again the convergence theorem of Jaakkola et al. (1994).



7. Unifying Tree Backup and Per-Decision 8. Conclusions

In order to understand better the two multi-step TD al-In this paper we presented four novel algorithms for us-
gorithms (tree backup and per-decision importance saming eligibility traces in off-policy learning. We provedah
pling), consider the full trajectory tree presented in Fggu these algorithms converge to correct action values under
4. The root of the tree is a state-action pair, and the tree coroffline updating in the tabular case. These appear to be
tains all the possible states and actions at each poinesStatthe first convergence results for multi-step off-policyrtea

are represented by hollow circles, and actions are reprang. We also showed that the tree backup algorithm con-
sented by filled circles. One trajectory through the tree carverges correctly for non-stationary and non-Markov behav-
be obtained by sampling the states at each ramification ager policies, as long as they are non-starving. This promis-
cording to the environment’s transition probabilitiesdan ing algorithm also performed best in our empirical results.
by sampling actions according to the behavior policy. Preliminary results have shown that it can speed learning
Both multi-step algorithms do backups along such trajectofijOUt macro-actions compared to one-step methods (Pre-
X 20 . . cup, 2000).
ries. The per-decision importance sampling algorithm uses
the actual rewards obtained during the trajectory. Because

the sampling at each action ramification is done accordindR€ferences

tc:. the behavjor PO“CV probabilities, the importance. SaM-pietterich, T. G. (1998). The MAXQ method for hierarchi-
pling correction is necessary to ensure correct estimates. .| reinforcement learningProceedings of the Fifteenth

The tree backu_p algorithm considers all possible actions at International Conference on Machine Learnindorgan
each step, not just the one taken. It backs up values accord- Kaufmann

ing to a cut like the one represented with the dotted line

in Figure 4. Because all action choices are considered idaakkola, T., Jordan, M., & Singh, S. (1994). On the con-
the backup, the convergence is guaranteed for any behavior vergence of stochastic iterative dynamic programming
policy that is non-starving. algorithms.Neural Computationg, 1185-1201.

This interpretation suggests that the two algorithms can b&aelbling, L. P. (1993). Hierarchical learning in stochas-
combined, without losing the convergence guarantees. If tic domains: Preliminary results.Proceedings of the
at a given state, the behavior policy is Markov and it is Tenth International Conference on Machine Learning
known, we can use per-decision importance sampling. If (pp. 167-173). Morgan Kaufmann.

the behavior is unknown and/or non-Markov, we can use,
the tree backup algorithm. This mixture could ensure faster
and more stable error reduction than either algorithm alone
We have not yet explored this idea empirically.

arr, R. (1998). Hierarchical control and learning for
Markov Decision Processes Doctoral dissertation,
Computer Science Division, University of California,
Berkeley, USA.

The two multi-step TD algorithms also have an interesting
relationship to multi-step Q-learning. In their controkve
sion, both algorithms cut the eligibility trace whenever an
exploratory action is taken. Their updates are equivatent t Precup, D. (2000)Temporal abstraction in reinforcement
Watkins's Q@) algorithm. learning Doctoral dissertation, Department of Com-
puter Science, University of Massachusetts, Amherst,
USA.
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Singh, S. P. (1992). Scaling reinforcement learning by
learning variable temporal resolution modeRroceed-
ings of the Ninth International Conference on Machine
Learning(pp. 406—415). Morgan Kaufmann.

Sutton, R. S., & Barto, A. G. (1998Reinforcement learn-
ing: An introduction MIT Press.
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Sutton, R. S., Precup, D., & Singh, S. (1999). Betweerwe need to show th@(") — Q"is a contraction mapping in
MDPs and semi-MDPs: A framework for temporal ab- the max norm. If this is true for any, then by applying the
straction in reinforcement learning Artificial Intelli- general convergence theorem, tistep return converges
gencel12 181-211. to Q™. Then any convex combination will also converge to

. ) . ™. For example, any combination usind\@arameter in
Watkins, C. J. C. H. (1989).Learning with delayed re- Q xamp y ination using\a !

: 4 the style of eligibility traces will converge Q™
wards Doctoral dissertation, Psychology Department, y 91Ty W verge Q
Cambridge University, Cambridge, UK. Let Q(s,a,k) denote the set of all possible trajectorieskof
state-action pairs starting wifls, a):

Appendix Q(s,a,k) = {(s0, 20,5181, ... % 1,8 1)|% = S 80 = a},
Proof of Theorem 1: and
We know that the classical importance sampling estlmator pn
Q'S is consistent and unbiased:

Tt T-1
E{ (Z Vklrt+k> [1 5 \ s=sa=2a b} =Q%(sa).
k=1

let w denote any such trajectory:
= (%0,80,S1,a1,..- % 1,8-1). Then the expected value
of the corrected truncated return for state-actjera) can
be expressed as follows:

=1 P E{R" |s =sa=-ab} -
We will show that the per-decision importance sampling n L, K
estimatorQPP has the same expected value@$. Let us > > Plwlss=sa=a b}V ri I_! b
|=

move the importance sampling correction inside the sum,  k=1weQ(sak)

and examine the expectation for tkeh term: 1l
+ ; Pr{w| s = s,a = a,b}Y"Q(sn, &) HH
)€Q(s,a,n) =1 "

{vk Yok ﬂ \& s,at—ab}

n
|t+l Z Z (l—!pS 1 s|a4>yk lrkl_!bl
- Tk Trt _ k=1weQ(sak)
- {V( t+k +l ‘ Tkl |Saata"'$+klaat+kl}
b1 Bkt
_l’_

Loy
b( ,
wegsan <|‘!ps4 i5b(s, a)) Y'Q(sh,an) ﬂ b
bk bro1

n _
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Since the underlying environment is an MDP, the second  — > ¥ > |_| ps 157U(S,a)

factor can be re-written as: k=l weQlsa, k)

Tetk TE
E{ L 1 ‘3 o, .. S+k7at+kab}'

k-1
Tk To-1 +Y Q(snan) [ PS5 7(s,a)
E{ bH_k e —7 ‘ S+k; A+ks b} weQ%a,k) ||:!L '
The expected value of this term is 1. Therefore, By applying the Bellman equation fo@™ iteratively n

times, we obtain:

Tt TS
E Vel k) |s = &at—ab} A
{(Z " .lt_|+1 Qisa) =73 1r§f11|'!pq s TS, a)
ke 1 kzlmeQ(
{Zykmkﬂ 8= s,at—ab}

iZti1 b +y' Q™(Stn, @ 4n) r!pg*,ia n(s,a).
|=

weQ(s,a,k)
which concludes the prooé.

Therefore,
Proof of Theorem 2:

The proof is structured in two stages. F_|rst, we consider thg,, ax|E{ (n) | b} — Q(s,a)| < y"max/Q(s,a) — Q'(s,a)|-
corrected truncated return correspondingX®. The cor-  (sa) (sa)

rected truncated return sums the rewards obtained from the

environment for onlyn steps, then uses the current estimate
of the value function to approximate the remaining value:

This means that anyr-step return is a contraction in
the max norm, and therefore, by applying theorem 1 of
Jaakkola, Jordan and Singh (1994), it converge3to

k-1 gy t4n-1 .
y In the second stage, we show that by applying the updates
e + Q(S+n;8t4n) - ¢
I2t41 D 2 dq b of Algorithm 1 forn successive steps, we perform the same



update as by using thestep returrRt(n). The eligibility ~ wherely,,,, is an indicator variable equal to 1af = a1
trace for state-action pafs,a) can be re-written as: and 0 otherwise. Then we have:

— i : n maX‘E{QnH sa)| b} —Q(sa)| =
max\ re+ yz [ Z n(s,a)

We have: , TB ,
E{ |a/a{+1 SI a) +|a’a{+1Q (s’,a) | b}

3 Arci(saABca(sa) = 3oy Pl 3 s, A)QTS )
k=1
= ymax\ g pSg n(s,a)

n t+k—1
z ( +|_| n ) (resk + VMQ(SHI@&%)
k=1 E{ |a!at+1 ( ,d )7Qn(slaa/))+

24, b (Stk> Ae1k)

Q(St+k-1,81k-1))
n trk— l t+n—1 +|a’a{+1(Q-r|;B(sl’a)_Qn(slaal))|b} ‘
= z ik |_| ‘|' Y'Q(St+n;@4n) |_| . <ymaxQ(s,a) — Q"(s,a)|.
=] 12t41 D I2t41 D (s3)
—Q(s, &) By applying now theorem 1 of Jaakkola, Jordan and Singh
- Rt(“) —Q(si,a). (1994), we can conclude that anystep return converges

to the correct action value.
Since our algorithm is equivalent to applying a convex mix-
ture of n-step updates, and each update converges to co
rect Q-values, algorithm 1 converges to correct Q-values a
well. ¢

§|nce all then-step returns converge @™, any convex lin-
gar combination of-step returns also converges@y. In
particular, we can use a fixexl parameter, as is usually
done in TDQ), or even a\ parameter dependent on the
Proof of Theorem 3: state.

The proof is again in two stages. First we show that .
E{QIB(s,a) | b} — Q" is a contraction, in order to apply For the second part of the proof, we show that applying

again theorem 1 of Jaakkola, Jordan and Singh (1994). WAIgorlthm 2 (with A = 1) for n steps is equivalent to using
. . B(s,a). The eligibility trace for state-action pafs, a)
use a proof by induction. . )
can be re-written as:
Let Q be the current estimate of the value function. For

t+k
n=1:

ask(sa) =Y [] ns,a)
I=t+1

maxE{Qi%(sa) | b} - Q(s3)| =

(s3) By adding and subtracting the weighted action value,

max\ ré+yy piem(s,a)Q(s,a) T(S-+k, &+k) Q(S+k; &+k) for the action taken on each step
(s & from the return, and regrouping, we have:
_rs_yz psgn(slaa)Q (slaa)| trk—1
s.a
’ Yt (s, @) Mtk
<ymax(Q(sa) - Qs a)l Z ST ’

+v%n Sk &) Q(St1k, @) — Q(S4k-1,84k-1))

For the induction step, we assume that

maxE{Qq°(s.a) |b} - Q(s8)| <
< ymax|Q} B(s,a) — Q(s,a)| which concludes the proo#.
T (sa) ’

=Q(s,a) + Z & k(S @)k,
k=1

and we show the same holds fQf,2,(s,a). We can re-
write Q! 8 (s,a) as follows:

IEl(S, a)=ry1+y Z T[(St+1aal)

(Q(5t+la a/)(]-* Ia’at_',l) + Ia’aH_lQ;‘[]-B(&‘Fl’ al)) )
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