Publication Date

2010

Journal or Book Title

Biotechnology Progress

Abstract

Active metabolic pathways in three-dimensional cancer-cell cultures are potential chemotherapeutic targets that would be effective throughout tumors. Chaotic vasculature creates cellular regions in tumors with distinct metabolic behavior that are only present in aggregate cell masses. To quantify cancer cell metabolism, transformed mouse fibroblasts were grown as spheroids and fed isotopically labeled culture medium. Metabolite uptake and production rates were measured as functions of time. Gas chromatography - mass spectrometry was used quantify the extent of labeling on amino acids present in cytoplasmic extracts. The labeling pattern identified several active and inactive metabolic pathways: glutaminolysis was found to be active, and malic enzyme and gluconeogenesis were inactive. Transformed cells in spheroids were also found to actively synthesize serine, cysteine, alanine, aspartate, glutamate, and proline; and not synthesize glutamine. The activities of these pathways suggest that cancer cells consume glutamine for biosynthesis and not to provide cellular energy. Determining active metabolic pathways indicates how cells direct carbon flow and may lead to the discovery of novel molecular targets for anti-cancer therapy

DOI

https://doi.org/10.1002/btpr.360

Pages

789-796

Volume

26

Issue

3

Share

COinS