Publication Date

2018

Journal or Book Title

APL Bioengineering

Abstract

Appropriately chosen descriptive models of cell migration in biomaterials will allow researchers to characterize and ultimately predict the movement of cells in engineered systems for a variety of applications in tissue engineering. The persistent random walk (PRW) model accurately describes cell migration on two-dimensional (2D) substrates. However, this model inherently cannot describe subdiffusive cell movement, i.e. migration paths in which the root mean square displacement increases more slowly than the square root of the time interval. Subdiffusivity is a common characteristic of cells moving in confined environments, such as three-dimensional (3D) porous scaffolds, hydrogel networks, and in vivo tissues. We demonstrate that a generalized anomalous diffusion (AD) model, which uses a simple power law to relate the mean square displacement (MSD) to time, more accurately captures individual cell migration paths across a range of engineered 2D and 3D environments than does the more commonly used PRW model. We used the AD model parameters to distinguish cell movement profiles on substrates with different chemokinetic factors, geometries (2D vs 3D), substrate adhesivities, and compliances. Although the two models performed with equal precision for superdiffusive cells, we suggest a simple AD model, in lieu of PRW, to describe cell trajectories in populations with a significant subdiffusive fraction, such as cells in confined, 3D environments.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

License

UMass Amherst Open Access Policy

Luzhansky_et_al_SuppMat_R2_black.docx (1278 kB)
Supplementary Materials

Figure 1.eps (1476 kB)
Figure 1

Figure 2.eps (3406 kB)
Figure 2

Figure 3.eps (3034 kB)
Figure 3

Figure 4.eps (2373 kB)
Figure 4

Figure 5.eps (2720 kB)
Figure 5

Share

COinS