Determination of trace elements in marine plankton by inductively coupled plasma mass spectrometry (ICP-MS)

Zikri Arslan, University of Massachusetts Amherst
N Ertas
Julian Tyson, University of Massachusetts Amherst
Peter C. Uden, University of Massachusetts Amherst
Eric Denoyer


A method has been developed for the determination of 23 elements in marine plankton in which inductively coupled plasma (ICP) source mass spectrometry (MS) was used to quantify the elements in the solution after digestion in a mixture of hydrofluoric and nitric acids in sealed PTFE vessels in a microwave field. The procedure was validated by the analysis of a standard reference soil (SRM 2709 San Joaquin Soil) and a standard reference fresh water plankton (CRM 414). The method was applied to the analysis of several marine plankton samples grown under controlled conditions including several whose growth media had been enriched with selenium. Matrix induced signal suppressions and instrumental drift were corrected by internal standardization. The suitabilities of germanium, indium, rhodium, scandium and yttrium as internal standard elements were evaluated. Neither scandium nor yttrium could be used due to the presence of these elements in the samples, germanium was used for the determination of As, Co, Cu, Fe, Ni, Se, Si and Zn, indium was used for Al, Ba, Ca, Eu, Sr, and Tl, and rhodium was used for Cd, Cr, Hg, Mg, Pb, Sb, Sn, and V. For Al, Ca, Cr, Cu, Fe, Mg, Mn, Ni, Si, Sr, V, and Zn internal standardization did not completely compensate for the suppressive effect of the heavier elements and the solutions were diluted. However, for As, Ba, Cd, Co, Eu, Hg, Pb, Sb, Se, Sn and Tl, it was possible to obtain accurate results despite the 35– 40% suppression in the signals. Isobaric overlap was only a problem in the cases of 42Ca and 78Se; 44Ca and 77Se, respectively, were used. Memory effects were only observed with Hg for which a nitric acid-sodium chloride solution was the most effective wash-out solution. The marine plankton samples were able to tolerate a higher concentration of Hg as the selenium concentration increased.