Permanent URI for this collection
Browse
Recent Submissions
Publication Untangling the Genetic Basis of Fibrolytic Specialization by Lachnospiraceae and Ruminococcaceae in Diverse Gut Communities(2013-01-01) Biddle, Amy; Stewart, Lucy; Blanchard, Jeffrey; Leschine, SusanThe Lachnospiraceae and Ruminococcaceae are two of the most abundant families from the order Clostridiales found in the mammalian gut environment, and have been associated with the maintenance of gut health. While they are both diverse groups, they share a common role as active plant degraders. By comparing the genomes of the Lachnospiraceae and Ruminococcaceae with the Clostridiaceae, a more commonly free-living group, we identify key carbohydrate-active enzymes, sugar transport mechanisms, and metabolic pathways that distinguish these two commensal groups as specialists for the degradation of complex plant material.Publication Conotoxins as Tools to Understand the Physiological Function of Voltage-Gated Calcium (CaV) Channels(2017-01-01) Ramírez, David; Gonzalez, Wendy; Fissore, Rafael A.Voltage-gated calcium (CaV) channels are widely expressed and are essential for the completion of multiple physiological processes. Close regulation of their activity by specific inhibitors and agonists become fundamental to understand their role in cellular homeostasis as well as in human tissues and organs. CaV channels are divided into two groups depending on the membrane potential required to activate them: High-voltage activated (HVA, CaV1.1–1.4; CaV2.1–2.3) and Low-voltage activated (LVA, CaV3.1–3.3). HVA channels are highly expressed in brain (neurons), heart, and adrenal medulla (chromaffin cells), among others, and are also classified into subtypes which can be distinguished using pharmacological approaches. Cone snails are marine gastropods that capture their prey by injecting venom, “conopeptides”, which cause paralysis in a few seconds. A subset of conopeptides called conotoxins are relatively small polypeptides, rich in disulfide bonds, that target ion channels, transporters and receptors localized at the neuromuscular system of the animal target. In this review, we describe the structure and properties of conotoxins that selectively block HVA calcium channels. We compare their potency on several HVA channel subtypes, emphasizing neuronal calcium channels. Lastly, we analyze recent advances in the therapeutic use of conotoxins for medical treatments.Publication Annotation and classification of the bovine T cell receptor delta genes(2010-01-01) Herzig, Carolyn TA; Lefranc, Marie-Paule; Baldwin, Cynthia LBackground γδ T cells differ from αβ T cells with regard to the types of antigen with which their T cell receptors interact; γδ T cell antigens are not necessarily peptides nor are they presented on MHC. Cattle are considered a "γδ T cell high" species indicating they have an increased proportion of γδ T cells in circulation relative to that in "γδ T cell low" species such as humans and mice. Prior to the onset of the studies described here, there was limited information regarding the genes that code for the T cell receptor delta chains of this γδ T cell high species. Results By annotating the bovine (Bos taurus) genome Btau_3.1 assembly the presence of 56 distinct T cell receptor delta (TRD) variable (V) genes were found, 52 of which belong to the TRDV1 subgroup and were co-mingled with the T cell receptor alpha variable (TRAV) genes. In addition, two genes belonging to the TRDV2 subgroup and single TRDV3 and TRDV4 genes were found. We confirmed the presence of five diversity (D) genes, three junctional (J) genes and a single constant (C) gene and describe the organization of the TRD locus. The TRDV4 gene is found downstream of the C gene and in an inverted orientation of transcription, consistent with its orthologs in humans and mice. cDNA evidence was assessed to validate expression of the variable genes and showed that one to five D genes could be incorporated into a single transcript. Finally, we grouped the bovine and ovine TRDV1 genes into sets based on their relatedness. Conclusions The bovine genome contains a large and diverse repertoire of TRD genes when compared to the genomes of "γδ T cell low" species. This suggests that in cattle γδ T cells play a more important role in immune function since they would be predicted to bind a greater variety of antigens.Publication Energy balance affects pulsatile secretion of luteinizing hormone from the adenohypophesis and expression of neurokinin B in the hypothalamus of ovariectomized gilts(2018-01-01) Thorson, Jennifer F; Prezotto, Ligia D.; Adams, Hillary; Petersen, Sandra L.; Clapper, Jeffrey A.; Wright, Elane C.; Oliver, William T.; Freking, Bradley A.; Foote, Andrew P.; Berry, Elaine D.; Nonneman, Danny J.; Lents, Clay A.The pubertal transition of gonadotropin secretion in pigs is metabolically gated. Kisspeptin (KISS1) and neurokinin B (NKB) are coexpressed in neurons within the arcuate nucleus of the hypothalamus (ARC) and are thought to play an important role in the integration of nutrition and metabolic state with the reproductive neuroendocrine axis. The hypothesis that circulating concentrations of luteinizing hormone (LH) and expression of KISS1 and tachykinin 3(TAC3, encodes NKB) in the ARC of female pigs are reduced with negative energy balance was tested using ovariectomized, prepubertal gilts fed to either gain or lose body weight. Restricted feeding of ovariectomized gilts caused a rapid and sustained metabolic response characterized by reduced concentrations of plasma urea nitrogen, insulin, leptin, and insulin-like growth factor-1 and elevated concentrations of free fatty acids. The secretory pattern of LH shifted from one of low amplitude to one of high amplitude, which caused overall circulating concentrations of LH to be greater in restricted gilts. Nutrient-restricted gilts had greater expression of follicle-stimulating hormone and gonadotropinreleasing hormone receptor, but not LH in the anterior pituitary gland. Expression of KISS1 in the ARC was not affected by dietary treatment, but expression of TAC3 was greater in restricted gilts. These data are consistent with the idea that hypothalamic expression of KISS1 is correlated with the number of LH pulse in pig, and further indicate that amplitude of LH pulses may be regulated by NKB in the gilt.Publication Activation of epidermal growth factor receptor is required for Chlamydia trachomatis development(2014-01-01) Patel, Achchhe L; Chen, Xiaofei; Wood, Scott T; Stuart, Elizabeth S; Arcaro, Kathleen F; Molina, Doris P; Petrovic, Snezana; Furdui, Cristina M; Tsang, Allen WBackground Chlamydia trachomatis (C. trachomatis) is a clinically significant human pathogen and one of the leading causative agents of sexually transmitted diseases. As obligate intracellular bacteria, C. trachomatis has evolved strategies to redirect the host’s signaling and resources for its own survival and propagation. Despite the clinical notoriety of Chlamydia infections, the molecular interactions between C. trachomatis and its host cell proteins remain elusive. Results In this study, we focused on the involvement of the host cell epidermal growth factor receptor (EGFR) in C. trachomatis attachment and development. A combination of molecular approaches, pharmacological agents and cell lines were used to demonstrate distinct functional requirements of EGFR in C. trachomatisinfection. We show that C. trachomatis increases the phosphorylation of EGFR and of its downstream effectors PLCγ1, Akt and STAT5. While both EGFR and platelet-derived growth factor receptor-β (PDGFRβ) are partially involved in bacterial attachment to the host cell surface, it is only the knockdown of EGFR and not PDGFRβ that affects the formation of C. trachomatis inclusions in the host cells. Inhibition of EGFR results in small immature inclusions, and prevents C. trachomatis-induced intracellular calcium mobilization and the assembly of the characteristic F-actin ring at the inclusion periphery. By using complementary approaches, we demonstrate that the coordinated regulation of both calcium mobilization and F-actin assembly by EGFR are necessary for maturation of chlamydial inclusion within the host cells. A particularly important finding of this study is the co-localization of EGFR with the F-actin at the periphery of C. trachomatis inclusion where it may function to nucleate the assembly of signaling protein complexes for cytoskeletal remodeling required for C. trachomatisdevelopment. Conclusion Cumulatively, the data reported here connect the function of EGFR to C. trachomatis attachment and development in the host cells, and this could lead to new venues for targeting C. trachomatis infections and associated diseases.Publication Tissue-specific regulation of Igf2r/Airn imprinting during gastrulation(2015-01-01) Marcho, Chelsea; Bevilacqua, Ariana; Tremblay, Kimberly D.; Mager, JesseBackground Appropriate epigenetic regulation of gene expression during lineage allocation and tissue differentiation is required for normal development. One example is genomic imprinting, which is defined as parent-of-origin mono-allelic gene expression. Imprinting is established largely due to epigenetic differences arriving in the zygote from sperm and egg haploid genomes. In the mouse, there are approximately 150 known imprinted genes, many of which occur in imprinted gene clusters that are regulated together. One imprinted cluster includes the maternally expressed Igf2r, Slc22a2, and Slc22a3 genes and the paternally expressed long non-coding RNA (lncRNA) Airn. Although it is known that Igf2r and Airn are reciprocally imprinted, the timing of imprinted expression and accompanying epigenetic changes have not been well characterized in vivo. Results Here we show lineage- and temporal-specific regulation of DNA methylation and histone modifications at the Igf2r/Airn locus correlating with differential establishment of imprinted expression during gastrulation. Our results show that Igf2r is expressed from both alleles in the E6.5 epiblast. After gastrulation commences, the locus becomes imprinted in the embryonic lineage with the lncRNA Airn expressed from the paternal allele and Igf2r restricted to maternal allele expression. We document differentially enriched allele-specific histone modifications in extraembryonic and embryonic tissues. We also document for the first time allele-specific spreading of DNA methylation during gastrulation concurrent with establishment of imprinted expression of Igf2r. Importantly, we show that imprinted expression does not change in the extraembryonic lineage even though maternal DMR2 methylation spreading does occur, suggesting distinct mechanisms at play in embryonic and extraembryonic lineages. Conclusions These results indicate that similar to preimplantation, gastrulation represents a window of dynamic lineage-specific epigenetic regulation in vivo.Publication Tyrosine Kinase-Mediated Axial Motility of Basal Cells Revealed by Intravital Imaging(2016-01-01) Roy, Jeremy; Kim, Bongki; Hill, Eric; Visconti, Pablo; Krapf, Dario; Vinegoni, Claudio; Weissleder, Ralph; Brown, Dennis; Breton, SylvieEpithelial cells are generally considered to be static relative to their neighbours. Basal cells in pseudostratified epithelia display a single long cytoplasmic process that can cross the tight junction barrier to reach the lumen. Using in vivo microscopy to visualize the epididymis, a model system for the study of pseudostratified epithelia, we report here the surprising discovery that these basal cell projections—which we call axiopodia—periodically extend and retract over time. We found that axiopodia extensions and retractions follow an oscillatory pattern. This movement, which we refer to as periodic axial motility (PAM), is controlled by c-Src and MEK1/2–ERK1/2. Therapeutic inhibition of tyrosine kinase activity induces a retraction of these projections. Such unexpected cell motility may reflect a novel mechanism by which specialized epithelial cells sample the luminal environment.Publication Mammary epithelium permeability during established lactation: associations with cytokine levels in human milk(2024-01-01) Browne, Eva P.; Pentecost, Brian T.; Arcaro, Kathleen F.Objective: The cytokine profile of human milk may be a key indicator of mammary gland health and has been linked to infant nutrition, growth, and immune system development. The current study examines the extent to which mammary epithelium permeability (MEP) is associated with cytokine profiles during established lactation within a sample of US mothers. Methods: Participants were drawn from a previous study of human milk cytokines. The present analysis includes 162 participants (98 Black, 64 White) with infants ranging from 1 to 18 months of age. Levels of cytokines were determined previously. Here we measure milk sodium (Na) and potassium (K) levels with ion-selective probes. Two approaches were used to define elevated MEP: Na levels ≥10 mmol/L and Na/K ratios greater than 0.6. Associations between maternal–infant characteristics, elevated MEP, and twelve analytes (IL-6, IL-8, TNFα, IL-1β, FASL, VEGFD, FLT1, bFGF, PLGF, EGF, leptin, adiponectin) were examined using bivariate associations, principal components analysis, and multivariable logistic regression models. Results: Elevated MEP was observed in 12 and 15% of milk samples as defined by Na and Na/K cutoffs, respectively. The odds of experiencing elevated MEP (defined by Na ≥ 10 mmol/L) were higher among Black participants and declined with older infant age. All cytokines, except leptin, were positively correlated with either Na or the Na/K ratio. A pro-inflammatory factor (IL-6, IL-8, TNFα, IL-1β, EGF) and a tissue remodeling factor (FASL, VEGFD, FLT1, bFGF, PLGF, adiponectin) each contributed uniquely to raising the odds of elevated MEP as defined by either Na or the Na/K ratio. Conclusion: This exploratory analysis of MEP and cytokine levels during established lactation indicates that elevated MEP may be more common in US populations than previously appreciated and that individuals identifying as Black may have increased odds of experiencing elevated MEP based on current definitions. Research aimed at understanding the role of MEP in mammary gland health or infant growth and development should be prioritized.Publication Regulatory T cells play a crucial role in maintaining sperm tolerance and male fertility(2023-01-01) Gervasi, Maria GraciaRegulatory T cells (Tregs) modulate tissue homeostatic processes and immune responses. Understanding tissue-Treg biology will contribute to developing precision-targeting treatment strategies. Here, we show that Tregs maintain the tolerogenic state of the testis and epididymis, where sperm are produced and mature. We found that Treg depletion induces severe autoimmune orchitis and epididymitis, manifested by an exacerbated immune cell infiltration [CD4 T cells, monocytes, and mononuclear phagocytes (MPs)] and the development of antisperm antibodies (ASA). In Treg-depleted mice, MPs increased projections toward the epididymal lumen as well as invading the lumen. ASA-bound sperm enhance sperm agglutination and might facilitate sperm phagocytosis. Tolerance breakdown impaired epididymal epithelial function and altered extracellular vesicle cargo, both of which play crucial roles in the acquisition of sperm fertilizing ability and subsequent embryo development. The affected mice had reduced sperm number and motility and severe fertility defects. Deciphering these immunoregulatory mechanisms may help to design new strategies to treat male infertility, as well as to identify potential targets for immunocontraception.Publication Zmym4 is required for early cranial gene expression and craniofacial cartilage formation(2023-01-01) Jourdeuil, Karyn; Neilson, Karen M.; Cousin, Helene; Tavares, Andre L. P.; Majumdar, Himani D.; Alfandari, Dominique; Moody, Sally A.The Six1 transcription factor plays important roles in the development of cranial sensory organs, and point mutations underlie craniofacial birth defects. Because Six1’s transcriptional activity can be modulated by interacting proteins, we previously screened for candidate interactors and identified zinc-finger MYM-containing protein 4 (Zmym4) by its inclusion of a few domains with a bona fide cofactor, Sine oculis binding protein (Sobp). Although Zmym4 has been implicated in regulating early brain development and certain cancers, its role in craniofacial development has not previously been described.Publication Effect of Maternal Diet on Maternal Milk and Breastfed Infant Gut Microbiomes: A Scoping Review(2023-01-01) Taylor, Rachel; Keane, Deirdre; Borrego, Paulina; Arcaro, KathleenWhile it is widely recognized that nutrition during pregnancy and lactation can affect the microbiome of breast milk as well as the formation of the infant gut microbiome, we are only just beginning to understand the extent to which maternal diet impacts these microbiomes. Given the importance of the microbiome for infant health, we conducted a comprehensive review of the published literature to explore the current scope of knowledge regarding associations between maternal diet and the breast milk and infant gut microbiomes. Papers included in this review assessed either diet during lactation or pregnancy, and the milk and/or infant gut microbiome. Sources included cohort studies, randomized clinical trials, one case-control study, and one crossover study. From an initial review of 808 abstracts, we identified 19 reports for a full analysis. Only two studies assessed the effects of maternal diet on both milk and infant microbiomes. Although the reviewed literature supports the importance of a varied, nutrient-dense maternal diet in the formation of the infant’s gut microbiome, several studies found factors other than maternal diet to have a greater impact on the infant microbiome.Publication Characterization of Nit Sheath Protein Functions and Transglutaminase-Mediated Cross-Linking in the Human Head Louse, Pediculus Humanus Capitis(2021-01-01) Kim, Ju Hyeon; Lee, Do Eun; Park, SangYoun; Clark, John M; Lee, Si HyeockBackground: Head louse females secrete liquid glue during oviposition, which is solidified to form the nit sheath over the egg. Recently, two homologous proteins, named louse nit sheath protein (LNSP) 1 and LNSP 2, were identified as adhesive proteins but the precise mechanism of nit sheath solidification is unknown. Methods: We determined the temporal transcriptome profiles of the head louse accessory glands plus oviduct, from which putative major structural proteins and those with functional importance were deduced. A series of RNA interference (RNAi) experiments and treatment of an inhibitor were conducted to elucidate the function and action mechanism of each component. Results: By transcriptome profiling of genes expressed in the louse accessory glands plus uterus, the LNSP1 and LNSP2 along with two hypothetical proteins were confirmed to be the major structural proteins. In addition, several proteins with functional importance, including transglutaminase (TG), defensin 1 and defensin 2, were identified. When LNSP1 was knocked down via RNA interference, most eggs became nonviable via desiccation, suggesting its role in desiccation resistance. Knockdown of LNSP2, however, resulted in oviposition failure, which suggests that LNSP2 may serve as the basic platform to form the nit sheath and may have an additional function of lubrication. Knockdown of TG also impaired egg hatching, demonstrating its role in the cross-linking of nit sheath proteins. The role of TG in cross-linking was further confirmed by injecting or hair coating of GGsTop, a TG inhibitor. Conclusions: Both LNSP1 and LNSP2 are essential for maintaining egg viability besides their function as glue. The TG-mediated cross-linking plays critical roles in water preservation that are essential for ensuring normal embryogenesis. TG-mediated cross-linking mechanism can be employed as a therapeutic target to control human louse eggs, and any topically applied TG inhibitors can be exploited as potential ovicidal agents.Publication Let-7 enhances murine anti-tumor CD8 T cell responses by promoting memory and antagonizing terminal differentiation(2023-01-01) Wells, Alexandria C.; Hioki, Kaito A.; Angelou, Constance C.; Lynch, Adam C.; Liang, Xueting; Ryan, Daniel J.; Thesmar, Iris; Zhanybekova, Saule; Zuklys, Saulius; Ullom, Jacob; Cheong, Agnes; Mager, Jesse; Hollander, Georg A.; Pobezinskaya, Elena L.; Pobezinsky, Leonid A.The success of the CD8 T cell-mediated immune response against infections and tumors depends on the formation of a long-lived memory pool, and the protection of effector cells from exhaustion. The advent of checkpoint blockade therapy has significantly improved anti-tumor therapeutic outcomes by reversing CD8 T cell exhaustion, but fails to generate effector cells with memory potential. Here, using in vivo mouse models, we show that let-7 miRNAs determine CD8 T cell fate, where maintenance of let-7 expression during early cell activation results in memory CD8 T cell formation and tumor clearance. Conversely, let-7-deficiency promotes the generation of a terminal effector population that becomes vulnerable to exhaustion and cell death in immunosuppressive environments and fails to reject tumors. Mechanistically, let-7 restrains metabolic changes that occur during T cell activation through the inhibition of the PI3K/AKT/mTOR signaling pathway and production of reactive oxygen species, potent drivers of terminal differentiation and exhaustion. Thus, our results reveal a role for let-7 in the time-sensitive support of memory formation and the protection of effector cells from exhaustion. Overall, our data suggest a strategy in developing next-generation immunotherapies by preserving the multipotency of effector cells rather than enhancing the efficacy of differentiation.Publication Gamma Delta TCR and the WC1 Co-Receptor Interactions in Response to Leptospira Using Imaging Flow Cytometry and STORM(2021-01-01) Gillespie, Alexandria; Gervasi, Maria Gracia; Sathiyaseelan, Thillainayagam; Connelley, Timothy; Telfer, Janice C.; Baldwin, Cynthia L.The WC1 cell surface family of molecules function as hybrid gamma delta (gamma delta) TCR co-receptors, augmenting cellular responses when cross-linked with the TCR, and as pattern recognition receptors, binding pathogens. It is known that following activation, key tyrosines are phosphorylated in the intracytoplasmic domains of WC1 molecules and that the cells fail to respond when WC1 is knocked down or, as shown here, when physically separated from the TCR. Based on these results we hypothesized that the colocalization of WC1 and TCR will occur following cellular activation thereby allowing signaling to ensue. We evaluated the spatio-temporal dynamics of their interaction using imaging flow cytometry and stochastic optical reconstruction microscopy. We found that in quiescent gamma delta T cells both WC1 and TCR existed in separate and spatially stable protein domains (protein islands) but after activation using Leptospira, our model system, that they concatenated. The association between WC1 and TCR was close enough for fluorescence resonance energy transfer. Prior to concatenating with the WC1 co-receptor, gamma delta T cells had clustering of TCR-CD3 complexes and exclusion of CD45. gamma delta T cells may individually express more than one variant of the WC1 family of molecules and we found that individual WC1 variants are clustered in separate protein islands in quiescent cells. However, the islands containing different variants merged following cell activation and before merging with the TCR islands. While WC1 was previously shown to bind Leptospira in solution, here we showed that Leptospira bound WC1 proteins on the surface of gamma delta T cells and that this could be blocked by anti-WC1 antibodies. In conclusion, gamma delta TCR, WC1 and Leptospira interact directly on the gamma delta T cell surface, further supporting the role of WC1 in gamma delta T cell pathogen recognition and cellular activation.Publication Deficient Spermiogenesis in Mice Lacking Rlim(2021-01-01) Wang, Feng; Gervasi, Maria Gracia; Bošković, Ana; Sun, Fengyun; Rinaldi, Vera D.; Wallingford, Mary C.; Tourzani, Darya A.; Mager, Jesse; Zhu, Lihua Julie; Rando, Oliver J.The X-linked gene Rlim plays major roles in female mouse development and reproduction, where it is crucial for the maintenance of imprinted X chromosome inactivation in extraembryonic tissues of embryos. However, while females carrying a systemic Rlim knockout (KO) die around implantation, male Rlim KO mice appear healthy and are fertile. Here, we report an important role for Rlim in testis where it is highly expressed in post-meiotic round spermatids as well as in Sertoli cells. Systemic deletion of the Rlim gene results in lower numbers of mature sperm that contains excess cytoplasm, leading to decreased sperm motility and in vitro fertilization rates. Targeting the conditional Rlim cKO specifically to the spermatogenic cell lineage largely recapitulates this phenotype. These results reveal functions of Rlim in male reproduction specifically in round spermatids during spermiogenesis.Publication TRPM7-like Channels are Functionally Expressed in Oocytes and Modulate Post-Fertilization Embryo Development in Mouse(2016-01-01) Carvacho, Ingrid; Ardestani, Goli; Lee, Hoi Chang; McGarvey, Kaitlyn; Fissore, Rafael A.; Lykke-Hartment, KarinThe Transient Receptor Potential (TRP) channels are a family of cationic ion channels widely distributed in mammalian tissues. In general, the global genetic disruption of individual TRP channels result in phenotypes associated with impairment of a particular tissue and/or organ function. An exception is the genetic ablation of the TRP channel TRPM7, which results in early embryonic lethality. Nevertheless, the function of TRPM7 in oocytes, eggs and pre-implantation embryos remains unknown. Here, we described an outward rectifying non-selective current mediated by a TRP ion channel in immature oocytes (germinal vesicle stage), matured oocytes (metaphase II eggs) and 2-cell stage embryos. The current is activated by specific agonists and inhibited by distinct blockers consistent with the functional expression of TRPM7 channels. We demonstrated that the TRPM7-like channels are homo-tetramers and their activation mediates calcium influx in oocytes and eggs, which is fundamental to support fertilization and egg activation. Lastly, we showed that pharmacological inhibition of the channel function delays pre-implantation embryo development and reduces progression to the blastocyst stage. Our data demonstrate functional expression of TRPM7-like channels in mouse oocytes, eggs and embryos that may play an essential role in the initiation of embryo development.Publication Caput Ligation Renders Immature Mouse Sperm Motile and Capable to Undergo cAMP-Dependent Phosphorylation(2021-01-01) Tourzani, Darya A.; Battistone, Maria A.; Salicioni, Ana M.; Breton, Sylvie; Visconti, Pablo E.; Gervasi, Maria G.Mammalian sperm must undergo two post-testicular processes to become fertilization-competent: maturation in the male epididymis and capacitation in the female reproductive tract. While caput epididymal sperm are unable to move and have not yet acquired fertilization potential, sperm in the cauda epididymis have completed their maturation, can move actively, and have gained the ability to undergo capacitation in the female tract or in vitro. Due to the impossibility of mimicking sperm maturation in vitro, the molecular pathways underlying this process remain largely unknown. We aimed to investigate the use of caput epididymal ligation as a tool for the study of sperm maturation in mice. Our results indicate that after seven days of ligation, caput sperm gained motility and underwent molecular changes comparable with those observed for cauda mature sperm. Moreover, ligated caput sperm were able to activate pathways related to sperm capacitation. Despite these changes, ligated caput sperm were unable to fertilize in vitro. Our results suggest that transit through the epididymis is not required for the acquisition of motility and some capacitation-associated signaling but is essential for full epididymal maturation. Caput epididymal ligation is a useful tool for the study of the molecular pathways involved in the acquisition of sperm motility during maturation.Publication Examining How Dog ‘Acquisition’ Affects Physical Activity and Psychosocial Well-Being: Findings from the BuddyStudy Pilot Trial(2019-01-01) Potter, Katie; Teng, Jessica E.; Mastellar, Brittany; Rajala, Caitlin; Balzer, laura B.Dog owners are more physically active than non-dog owners, but evidence of a causal relationship between dog acquisition and increased physical activity is lacking. Such evidence could inform programs and policies that encourage responsible dog ownership. Randomized controlled trials are the ‘gold standard’ for determining causation, but they are prohibited in this area due to ethical concerns. In the BuddyStudy, we tested the feasibility of using dog fostering as a proxy for dog acquisition, which would allow ethical random assignment. In this single-arm trial, 11 participants fostered a rescue dog for six weeks. Physical activity and psychosocial data were collected at baseline, 6, and 12 weeks. At 6 weeks, mean change in steps/day was 1192.1 ± 2457.8. Mean changes on the Center for Epidemiologic Studies Depression Scale and the Perceived Stress Scale were −4.9 ± 8.7 and −0.8 ± 5.5, respectively. More than half of participants (55%) reported meeting someone new in their neighborhood because of their foster dog. Eight participants (73%) adopted their foster dog after the 6-week foster period; some maintained improvements in physical activity and well-being at 12 weeks. Given the demonstrated feasibility and preliminary findings of the BuddyStudy, a randomized trial of immediate versus delayed dog fostering is warranted.Publication Human Sperm Remain Motile After a Temporary Energy Restriction but do Not Undergo Capacitation-Related Events(2021-01-01) Marín-Briggiler, Clara I.; Luque, Guillermina M.; Gervasi, María G.; Oscoz-Susino, Natalia; Sierra, Jessica M.; Mondillo, Carolina; Salicioni, Ana M.; Krapf, Darío; Visconti, Pablo E.; Buffone, Mariano G.To acquire fertilization competence, mammalian sperm must undergo several biochemical and physiological modifications known as capacitation. Despite its relevance, the metabolic pathways that regulate the capacitation-related events, including the development of hyperactivated motility, are still poorly described. Previous studies from our group have shown that temporary energy restriction in mouse sperm enhanced hyperactivation, in vitro fertilization, early embryo development and pregnancy rates after embryo transfer, and it improved intracytoplasmic sperm injection results in the bovine model. However, the effects of starvation and energy recovery protocols on human sperm function have not yet been established. In the present work, human sperm were incubated for different periods of time in medium containing glucose, pyruvate and lactate (NUTR) or devoid of nutrients for the starving condition (STRV). Sperm maintained in STRV displayed reduced percentages of motility and kinematic parameters compared to cells incubated in NUTR medium. Moreover, they did not undergo hyperactivation and showed reduced levels of ATP, cAMP and protein tyrosine phosphorylation. Similar to our results with mouse sperm, starvation induced increased intracellular Ca2+ concentrations. Starved human sperm were capable to continue moving for more than 27 h, but the incubation with a mitochondrial uncoupler or inhibitors of oxidative phosphorylation led to a complete motility loss. When exogenous nutrients were added back (sperm energy recovery (SER) treatment), hyperactivated motility was rescued and there was a rise in sperm ATP and cAMP levels in 1 min, with a decrease in intracellular Ca2+ concentration and no changes in sperm protein tyrosine phosphorylation. The finding that human sperm can remain motile for several hours under starvation due to mitochondrial use of endogenous metabolites implies that other metabolic pathways may play a role in sperm energy production. In addition, full recovery of motility and other capacitation parameters of human sperm after SER suggests that this treatment might be used to modulate human sperm fertilizing ability in vitro.Publication Extracellular Vesicles, the Road toward the Improvement of ART Outcomes(2020-01-01) Gervasi, Maria G.; Soler, Ana J.; González-Fernández, Lauro; Alves, Marco G.; Oliveira, Pedro F.; Martín-Hidalgo, DavidNowadays, farm animal industries use assisted reproductive technologies (ART) as a tool to manage herds’ reproductive outcomes, for a fast dissemination of genetic improvement as well as to bypass subfertility issues. ART comprise at least one of the following procedures: collection and handling of oocytes, sperm, and embryos in in vitro conditions. Therefore, in these conditions, the interaction with the oviductal environment of gametes and early embryos during fertilization and the first stages of embryo development is lost. As a result, embryos obtained in in vitro fertilization (IVF) have less quality in comparison with those obtained in vivo, and have lower chances to implant and develop into viable offspring. In addition, media currently used for IVF are very similar to those empirically developed more than five decades ago. Recently, the importance of extracellular vesicles (EVs) in the fertility process has flourished. EVs are recognized as effective intercellular vehicles for communication as they deliver their cargo of proteins, lipids, and genetic material. Thus, during their transit through the female reproductive tract both gametes, oocyte and spermatozoa (that previously encountered EVs produced by male reproductive tract) interact with EVs produced by the female reproductive tract, passing them important information that contributes to a successful fertilization and embryo development. This fact highlights that the reproductive tract EVs cargo has an important role in reproductive events, which is missing in current ART media. This review aims to recapitulate recent advances in EVs functions on the fertilization process, highlighting the latest proposals with an applied approach to enhance ART outcome through EV utilization as an additive to the media of current ART procedures.