Water Reports

Permanent URI for this collection

Browse

Recent Submissions

  • Publication
    The River Process Corridor: A Modular River Assessment Method Based on Process Units and Widely Available Data in the Northeast US.
    (2019-01-01) Gartner, John D.; Hatch, Christine E; Vogel, Eve
    We define the river process corridor (RPC) as the area adjacent to a river that is likely to affect and be affected by river and floodplain processes. Here we present a novel approach for delineating the RPC that utilizes widely available geospatial data, can be applied uniformly across broad and multi-scalar spatial extents, requires relatively low levels of expertise and cost, and allows for modular additions and adaptations using additional data that is available in particular areas. Land managers are increasingly using a variety of delineated river and floodplain areas for applied purposes such as hazard avoidance, ecological conservation, and water quality protection. Currently, the most-used delineation methods rely on historic maps, field surveys, and/or calibrated empirical models. These approaches are examples of what is possible, but they may be time-intensive, may rely on jurisdiction or organization-specific data or data information systems, or may require specific local-user input or hand-drawing. Our approach, the River Process Corridor Modular Assessment Method, offers a rapid, uniform and objective river and floodplain process area delineation method that uses transparent, easily accessible data, and may be used across large areas. it is derived from the sum of five functional process units that together capture the RPC: (i) the Flood Processes Unit, derived from hydraulic modeling to determine areas subject to overbank deposition and erosion, in-channel deposition and erosion, bank erosion, and channel avulsions; (ii) the Landslide and Steep Terrain Processes Unit, based on terrain slope to show locations subject to sediment delivery, bank failures, and other mass wasting proximal to the flood-prone area; (iii) Wetland Processes Unit, based on the U.S. National Wetlands Inventory to show areas where wetland processes occur; (iv) Channel Migration Processes Unit, based on channel location and migration rates to show areas susceptible to lateral channel movement; and (v) Riparian Ecologic Processes Unit. This paper details the assessment approach for each of these units, and provides a summary outline and table for users. To illustrate and evaluate its potential, we apply the approach in three river reaches in mountainous and low-relief watersheds in the northeastern U.S. and compare results with recent geomorphic change, observed in the field and in historic imagery. The River Process Corridor Modular Assessment Method performs very well, capturing 92% of observed landslide areas, 87% of observed floodplain deposition areas, and 100% of channel migration areas. We also provide an example of how additional data available from the State of Vermont could be added in a modular approach. These results indicate the RPC method is successful at providing both an accurate assessment of potential active hazard areas and sensitive environmental areas, and that it also includes a margin of safety that many managers desire. Its modular nature allows for flexible weighting of different metrics to suit specific applications, and piecewise updating as new data or approaches become available. We conclude that maps of the RPC can be useful as an advisory layer to natural resource managers, property owners, planners and regulators to identify areas that may be valuable for ecological conservation or at risk of future damage during floods, or where they might consider allowing natural river processes occur, in order to enhance ecological processes and help attenuate future flood damage elsewhere.
  • Publication
    River and Stream Power Assessment Report Including Culvert and Bridge Vulnerability Analysis: Deerfield River Basin, Massachusetts and Vermont
    (2017-01-01) MacBroom, James G; Schiff, Roy; Louisos, Jessica
    This geomorphic assessment of Deerfield River in western Massachusetts and southern Vermont has been prepared by Milone & MacBroom, Inc. (MMI) on behalf of the University of Massachusetts as part of its "Farms, Floods, and FGM" project, funded by the United States Department of Agriculture – National Institute of Food and Agriculture National Integrated Water Quality Program(USDA – NIFA NIWQP) program. This project is a broad-based geomorphic assessment of the Deerfield River and its adjacent riparian corridor to define its characteristics, processes, and management issues. The river channel is used extensively for hydroelectric power generation and recreation, with agricultural land uses on the floodplains. This river assessment focuses upon temporal river processes and resulting features rather than the more common assessment of local cross section forms and characteristics that change after annual floods. The Deerfield River has been found to be remarkably stable with moderate specific stream power (SSP) except in highly contracted segments, and the few large floodplains are more prone to sediment deposition rather than dynamic migratory channels or avulsions. In contrast, several larger tributaries have steep gradients and narrow confined valleys that lead to high stream power and dramatic geomorphic changes during floods. Consequently, the anticipated hydrologic effects of climate change will be more acute along the tributaries than the main stem. The second part of this project included developing a Geographic Information System (GIS)-based model to compute specific stream power and using the results to help predict culvert and bridge vulnerability of failure. This vulnerability screening tool uses remote sensing data and a regression equation to predict hydrology and channel reach slope and a prediction of channel and structure condition that is compared to a field inventory of culverts. The purpose of the vulnerability screen analysis is to help identify the potential for channel and structural risk at culverts due to erosion, sedimentation, debris, and flooding. Vulnerable structures can then be ranked by priority for subsequent on-site investigation. River Assessment Methodology is based on a "hydro-morphology" approach and employs fluvial assessment of watershed valley and river channel characteristics, an analysis of the Active River Area, an assessment of the equilibrium state and adjustments, and culvert/ bridge vulnerability analyses throughout the Deerfield watershed in Vermont and Massachusetts (HUC 01080203).
  • Publication
    Supporting New England Communities to Become River-Smart: Policies and Programs that can Help New England Towns Thrive Despite River Floods
    (2016-01-01) Vogel, Eve
    This report aims to help New England’s communities and their residents, as well as the governments thatserve them, to better deal with and adjust to riverfloods. It points to practical policy solutions at federal, state and regional levels that can support NewEngland communities to become what we call river-smart.