Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

Robust control of large-scale nonlinear constrained systems

Weihua Zhang, University of Massachusetts Amherst


Current applications of nonlinear model predictive control algorithms are restricted to small-scale processes, due mainly to the computational difficulties encountered when trying to solve the non-convex nonlinear optimization problem on-line. Also, there is no complete procedure in synthesizing a nonlinear model predictive controller that guarantees stability when there is model uncertainty and when the state is not completely measured. Although there are plenty of results available for the nominal closed-loop stability of various NMPC algorithms, few results are available on the robust stability of constrained nonlinear systems. We have proposed a cascade NMPC algorithm for large-scale systems. This control algorithm consists of two levels where the low-level controller guarantees robust stability while the high-level controller optimizes nominal performance subject to robust stability constraint. The low-level controller is an output feedback controller while the high-level controller is a state feedback controller. There are several characteristics to be noticed about this algorithm: it is computationally efficient and is always feasible to be implemented on-line; it uses a closed-loop control strategy; it guarantees robust asymptotic stability with various kinds of model uncertainties, if such a controller exists. For model uncertainty description, we consider both parametric and structural uncertainty. We develop an uncertainty description that can handle both parametric and structural uncertainties in a uniform manner. We have applied the proposed algorithm to an industrial system consisting of a co-polymerization reactor with recycle. It is a reasonably complex, highly nonlinear and poorly modeled (i.e., uncertain) process. Simulation results show the feasibility of implementing this algorithm on realistic industrial systems where model uncertainties always exist.

Subject Area

Chemical engineering

Recommended Citation

Zhang, Weihua, "Robust control of large-scale nonlinear constrained systems" (2002). Doctoral Dissertations Available from Proquest. AAI3068605.