Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

The role of N -linked glycans in protein quality control in the early secretory pathway

Sherri L Svedine, University of Massachusetts Amherst

Abstract

The ER quality control machinery maintains the fidelity of the protein maturation process by sorting aberrant proteins for ER-associated protein degradation (ERAD), a process requiring retranslocation from the ER lumen to the cytosol and degradation by the proteasome. To understand the role of N-linked glycans in ERAD, degradation of wild-type (Tyr) and mutant (Tyr(C85S)) tyrosinase was examined. Here, we demonstrated that both wild-type and mutant tyrosinase were substrates of the 26S proteasome. Tyr(C85S), however, was less stable, and the cell line harboring the C85S mutation exhibited an up-regulated unfolded protein response as measured by XBP-1 mRNA splicing. Inhibiting mannose trimming or accumulating Tyr(C85S) in a monoglucosylated form led to stabilization, supporting a role for lectin chaperones in ER retention and mannose trimming in proteasomal degradation. In contrast, preventing glucose trimming caused rapid disappearance of protein. Upon closer examination employing procedures which monitored the appearance of degradation product (small peptides) rather than the disappearance of full-length protein, ablating lectin chaperone binding induced the formation of aggregates. Colocalization of tyrosinase with BiP and PDI, but not calnexin, implicated the latter two in aggregate dissolution. The fact that aggregates were disassembled and cleared from the ER at a rate similar- to non-aggregated species and degraded by the proteasome suggests a model of glycoprotein degradation in which non-lectin molecular chaperones function in the quality control of glycoproteins, at least in part, in the absence of lectin chaperones.

Subject Area

Cellular biology|Biochemistry|Molecular biology

Recommended Citation

Svedine, Sherri L, "The role of N -linked glycans in protein quality control in the early secretory pathway" (2003). Doctoral Dissertations Available from Proquest. AAI3110559.
https://scholarworks.umass.edu/dissertations/AAI3110559

Share

COinS