Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

Electronic spectroscopy, kinetics and photodissociation dynamics of gas phase cations

Kay Lesley Stringer, University of Massachusetts Amherst


A thorough understanding of the chemical and physical properties of small molecules involves spectroscopy, thermodynamics, kinetics and dynamics of the system. This thesis highlights the use of photochemistry to measure these properties for Au+(C2H4), Pt+ (C2H4) and ethylbenzene cation as well as for deposition of zeolite films. Chapter 1 highlights the principles behind photodissociation and the information that can be obtained from spectroscopy. Also discussed is what the appearance of the photodissociation spectrum and time-of-flight profile implies about the molecular dynamics and kinetics. Chapter 2 examines gas-phase photodissociation of the classic π complexes Au+(C2H4) and Pt+(C 2H4). Spectroscopic onsets provide upper limits to the metal-ligand bond strengths of 344 kJmol−1 and 230 kJmol−1 for Au+(C2H4) and Pt +(C2H4) respectively. The spectrum of Au +(C2H4) features an extended progression in the metal-ligand stretch with a frequency of 176 cm−1 that drops to 160 cm−1 in Au+(C 2D4). Hybrid density functional theory (DFT) calculations and TD-DFT calculations are used to explore the structures, bonding and electronic spectroscopy of the two complexes. The photodissociation pathways and kinetics of the ethylbenzene radical cation are investigated in Chapter 3. The energy dependence of the various pathways are investigated. The most abundant dissociation channel is C 7H7+ + CH3 at all wavelengths, but C6H4+ + C2H6 and C6H6+ + C2H4 are also important in the near-UV. The C6H4+ + C2H6 pathway is especially interesting as it exhibits a significant peak broadening with ∼0.6 eV kinetic energy release. Later studies using vibrationally cold ions examined the dissociation rate, k(E), at various photon energies. Simulations of the time of flight profile show that the k(E) increases from 0.97 × 106 s−1 at 2.38 eV to 2.6 × 106 s −1 at 2.67 eV internal energy. An alternate application of molecule-light interaction to surface science is explored in Chapter 4. Here, the technique of pulsed laser deposition has been employed in efforts to improve thin film growth for ETS-4 molecular sieves. Characterization using X-Ray Diffraction and Transmission Electron Microscopy confirm that the zeolite structure is unaltered during the deposition process. Recommendations for further studies are discussed in Chapter 5.

Subject Area

Chemistry|Analytical chemistry

Recommended Citation

Stringer, Kay Lesley, "Electronic spectroscopy, kinetics and photodissociation dynamics of gas phase cations" (2004). Doctoral Dissertations Available from Proquest. AAI3152750.