Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

Shear-induced crystallization of model polymers

Aadil Elmoumni, University of Massachusetts Amherst

Abstract

The properties of a product made of semi-crystalline polymers strongly depend on both molecular parameters and on the processing conditions applied. This dissertation is focused on flow-induced structure formation correlating the material and crystallization time scales with the structure development in isotactic polypropylene (iPP) after a temperature quench. Morphological changes during the quiescent (no flow prior to crystallization) and shear-induced (with flow prior to crystallization) isothermal crystallization have been monitored with optical microscopy, light scattering and rheology. The experiments have the purpose to identify the effects of shear rate, total strain, molar mass and high molecular weight fraction on the crystallization of iPP. Dimensionless quantities are introduced to correlate the characteristic time scales with structure development; namely, the Weissenberg number ( We), consisting of the product of the applied shear rate and a material characteristic relaxation time ([special characters omitted]) is introduced to demonstrate the transition from spherulitic to oriented structure. A dimensionless characteristic crystallization time scale (τ), defined as the ratio of the experimental time and a characteristic crystallization time, and allows for comparison of crystallization patterns of samples with different molecular specifications (molecular weight, molecular weight distribution) and at different thermo-mechanical conditions. Wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) show the characteristics of the crystalline populations present in the cooled samples after completion of crystallization.

Subject Area

Chemical engineering|Polymers|Plastics

Recommended Citation

Elmoumni, Aadil, "Shear-induced crystallization of model polymers" (2005). Doctoral Dissertations Available from Proquest. AAI3163664.
https://scholarworks.umass.edu/dissertations/AAI3163664

Share

COinS