Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

Genetic studies of replication restart in Escherichia coli

Ruethairat Boonsombat, University of Massachusetts Amherst


Faithful DNA replication is essential for all organisms to maintain genetic integrity. During the DNA replication, replications forks are frequently stalled or collapsed due to the encounter of DNA lesions or blocking proteins. These events can occur anywhere on the chromosome which is away from the origin of replication. For survival, cells require a number of proteins to repair the damages and restart the replication near or at the damaged site. In Escherichia coli, a group of proteins called primosomal proteins consisting of PriA, PriB, PriC, Rep, DnaT, DnaC, DnaB and DnaG are required for directing DnaB replicative helicase back onto DNA substrates. The main difference between chromosomal replication at oriC and replication restart is the former process is initiated by DnaA recognizing a specific sequence of oriC while the latter process can be initiated by PriA recognizing a specific DNA structure. The mechanism of replication restart is highly ordered and well regulated, and to date, this mechanism has yet to be fully understood. This lab uses a genetic tool to understand replication restart in vivo and discovered that replication restart in E. coli can be explained by a multiple replication restart pathway model (Sandler, 2000). This dissertation presents work that advances our knowledge of replication restart by studying Rep and PriB using a genetic approach. Although it has been shown that Rep and PriB are important for replication restart, the contribution of these two proteins in vivo is still not clearly understood. In the case of Rep, this study provided the characterization of three rep mutants: a rep null mutant, a rep defective in a regulation of Rep monomer helicase activity and a rep ATP hydrolysis deficient mutant. Although these rep mutants showed a similar phenotype, there were some differences such as the phenotypes when combined with other mutations and spontaneous suppressors. In this study, a rep null mutant exhibited an unexpected phenotype including high basal levels of SOS expression and cell filamentation when combined with priB. The priB rep double mutant developed a spontaneous suppressor mapped in dnaC region. A rep mutant defective in an autoinhibition of Rep monomer helicase activity showed a more detrimental phenotype than a rep null mutant when combined with priB suggesting that this mutant Rep inappropriately removes PriC and completes with PriA. The other rep mutant, an ATPase deficient mutant, showed a similar phenotype to that of a rep null mutant as a single mutant and a double mutant with priB, however, spontaneous suppressors developed in the regions close to priC and dnaC, but not in the either of these genes. Lastly, PriB mutants that biochemical evidence has shown some effects on PriA, ssDNA and DnaT binding were tested for effects on replication restart in vivo. The studies of these PriB mutants lead to a model of the regulation of replication restart via PriA-PriB pathway which can be explained by a hand-off mechanism for primosomal assembly.

Subject Area


Recommended Citation

Boonsombat, Ruethairat, "Genetic studies of replication restart in Escherichia coli" (2008). Doctoral Dissertations Available from Proquest. AAI3336940.