Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

CHROMATOGRAPHIC SEPARATION AND IDENTIFICATION OF COMPOUNDS IN SHALE OIL AND OIL SHALE WITH SPECIFIC ELEMENT DETECTION

GISELLE BETH LIMENTANI, University of Massachusetts Amherst

Abstract

Variable atmosphere pyrolysis of Tosco Oil Shale was performed utilizing a Chemical Data Systems 320 concentrator and a gas blending system. Flame ionization (FID) and nitrogen specific (NPD) detection were performed to determine the atmosphere which maximized hydrocarbon compound formation while minimizing nitrogen compound formation. Comparisons of FID and NPD peak areas as a function of temperature are given for 0%, 10%, 15% and 30% oxygen. The NPD peak areas, as well as the FID peak areas, are contrasted separately. The initial development of a method for distinguishing condensed ring aromatic systems from alkyl substituted aromatic systems was accomplished. N,2,4,6-tetrachloroacetanilide was reacted with standards and with an aromatic fraction of shale oil. Mass spectral analysis and specific element detection (for carbon and chlorine), with a microwave emission detector (MED), were performed on the reaction products. Chlorination of alkyl groups occurred. The formation of olefins was documented, contrary to literature reports. Gas and liquid chromatographic methods for several organoarsenic compounds were developed. The stability of some pentacoordinate organoarsenic compounds was investigated by thermogravimetry. The concentration of arsenic in boiling point distillation cuts of shale oil and in concentrated fractions from liquid chromatographic class separations were obtained by x-ray fluorescence and by inductively coupled plasma with hydride generation. The analysis of shale oil on the GC-MED system was attempted and although a detection limit of 0.4 picograms/second was obtained on the arsenic 228.8 nanometer line no arsenic species could be identified.

Subject Area

Analytical chemistry|Petroleum production

Recommended Citation

LIMENTANI, GISELLE BETH, "CHROMATOGRAPHIC SEPARATION AND IDENTIFICATION OF COMPOUNDS IN SHALE OIL AND OIL SHALE WITH SPECIFIC ELEMENT DETECTION" (1984). Doctoral Dissertations Available from Proquest. AAI8410308.
https://scholarworks.umass.edu/dissertations/AAI8410308

Share

COinS