Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

Local search algorithms for geometric object recognition: Optimal correspondence and pose

J. Ross Beveridge, University of Massachusetts Amherst


Recognizing an object by its shape is a fundamental problem in computer vision, and typically involves finding a discrete correspondence between object model and image features as well as the pose--position and orientation--of the camera relative to the object. This thesis presents new algorithms for finding the optimal correspondence and pose of a rigid 3D object. They utilize new techniques for evaluating geometric matches and for searching the combinatorial space of possible matches. An efficient closed-form technique for computing pose under weak-perspective (four parameter 2D affine) is presented, and an iterative non-linear 3D pose algorithm is used to support matching under full 3D perspective. A match error ranks matches by summing a fit error, which measures the quality of the spatial fit between corresponding line segments forming an object model and line segments extracted from an image, and an omission error, which penalizes matches which leave portions of the model omitted or unmatched. Inclusion of omission is crucial to success when matching to corrupted and partial image data. New optimal matching algorithms use a form of combinatorial optimization called local search, which relies on iterative improvement and random sampling to probabilistically find globally optimal matches. A novel variant has been developed, subset-convergent local search finds optimal matches with high probability on problems known to be difficult for other techniques. Specifically, it does well on a test suite of highly fragmented and cluttered data, symmetric object models, and multiple model instances. Problem search spaces grows exponentially in the number of potentially paired features n, yet empirical performance suggests computation is bounded by $n\sp2.$ Using the 3D pose algorithm during matching, local search solves problems involving significant amounts of 3D perspective. No previous work on geometric matching has generalized in this way. Our hybrid algorithm combines the closed-form weak-perspective pose and iterative 3D pose algorithms to efficiently solve matching problems involving perspective. For robot navigation, this algorithm recognizes 3D landmarks, and thereby permits a mobile robot to successfully update its estimated pose relative to these landmarks.

Subject Area

Computer science|Artificial intelligence

Recommended Citation

Beveridge, J. Ross, "Local search algorithms for geometric object recognition: Optimal correspondence and pose" (1993). Doctoral Dissertations Available from Proquest. AAI9329570.