Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

Body mass scaling of endurance cycling performance

Daniel Paul Heil, University of Massachusetts Amherst


The purpose of this dissertation was to assess the relationship between body mass (M$\rm\sb{B})$ and endurance cycling performance. Four experiments were designed to describe the relationship between a dependent variable (Y) and M$\rm\sb{B}$ using multiple log-linear regression analysis procedures. Each analysis was used to conclude that Y changed proportionally with M$\rm\sb{B}$ raised to the power of b (i.e. $\rm Y\propto M\sbsp{B}{b}),$ where b is the M$\rm\sb{B}$ exponent. Experiment I utilized a preexisting data set from subjects aged 20-79 years to determine that peak oxygen uptake (VO$\sb{2PEAK}$) scaled with M$\rm\sb{B}$ to the 0.75 (95% CI: 0.651-0.862) power in a heterogeneous population and 0.65 (0.530-0.775) power in a homogeneous population. These findings were shown to be consistent with predictions from the theory of geometry similarity (TGS). Experiment II evaluated how net VO$\sb2$ (VO$\rm\sb{2(NET)})$ scaled with M$\rm\sb{B}$ as well as the combined mass (M$\rm\sb{C})$ of the cyclist and bicycle and M$\rm\sb{B}$ during uphill treadmill bicycling. It was concluded that VO$\rm\sb{2(NET)}\propto M\sbsp{C}{1.0}$ due to gravitational resistance, while VO$\rm\sb{2(NET)}\propto M\sbsp{B}{0.89}$ because the cyclists' bicycles were relatively lighter for heavier cyclists. Experiment III determined that the scaling relationship between projected frontal area (A$\rm\sb{p})$ and body mass. Both body A$\rm\sb{p}$ (A$\rm\sb{p}$ for cyclist's body) and total A$\rm\sb{p}$ (A$\rm\sb{p}$ for cyclist's body and bicycle) scaled with M$\rm\sb{B}$ to powers significantly lower (0.408 (95% CI: 0.299-0.517) and 0.463 (0.262-0.663), respectively) than the 0.67 power predicted for area measurements by the TGS. This indicates that larger cyclists should experience less aerodynamic drag relative to their body mass than smaller cyclists at a constant ground speed. Lastly, results from Experiments I-III were combined with data from the literature to derive and validate a generalized allometric model (GAM) of endurance cycling performance in Experiment IV. The GAM equated the metabolic power supply and external power demands of time-trial cycling performance in a mathematical model expressed exclusively in terms of M$\rm\sb{B}$ differences. The model results appeared consistent with anecdotal observations and valid when compared to actual time-trial data. The results of this dissertation support the use of M$\rm\sb{B}$ scaling as a tool for better understanding of body mass as a determinant of human performance.

Subject Area

Physical education|Sports medicine

Recommended Citation

Heil, Daniel Paul, "Body mass scaling of endurance cycling performance" (1997). Doctoral Dissertations Available from Proquest. AAI9737536.