Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

Modeling natural microimage statistics

Alexey Alexandrovich Koloydenko, University of Massachusetts Amherst


A large collection of digital images of natural scenes provides a database for analyzing and modeling small scene patches (e.g., 2 x 2) referred to as natural microimages. A pivotal finding is the stability of the empirical microimage distribution across scene samples and with respect to scaling. With a view toward potential applications (e.g. classification, clutter modeling, segmentation), we present a hierarchy of microimage probability models which capture essential local image statistics. Tools from information theory, algebraic geometry and of course statistical hypothesis testing are employed to assess the “match” between candidate models and the empirical distribution. Geometric symmetries play a key role in the model selection process. One central result is that the microimage distribution exhibits reflection and rotation symmetry and is well-represented by a Gibbs law with only pairwise interactions. However, the acceptance of the up-down reflection symmetry hypothesis is borderline and intensity inversion symmetry is rejected. Finally, possible extensions to larger patches via entropy maximization and to patch classification via vector quantization are briefly discussed.

Subject Area

Statistics|Mathematics|Computer science

Recommended Citation

Koloydenko, Alexey Alexandrovich, "Modeling natural microimage statistics" (2000). Doctoral Dissertations Available from Proquest. AAI9988810.