Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Date of Award

9-2010

Access Type

Campus Access

Document type

dissertation

Degree Name

Doctor of Philosophy (PhD)

Degree Program

Civil and Environmental Engineering

First Advisor

David P. Ahlfeld

Second Advisor

Sarina J. Ergas

Third Advisor

Klaus Nüsslein

Subject Categories

Environmental Engineering

Abstract

Acid mine drainage (AMD) results from biogeochemical oxidation of iron and sulfur minerals in flooded mine shafts and waste rock piles. In the presence of water and oxygen, sulfur rich minerals are oxidized to produce sulfate ions and cations such as ferrous, copper and aluminum ions, which lower the pH. The low pH further dissolves and releases other metals in the ore resulting in a high concentration of metal ions in the water.

The solute concentration in a stream is a result of dynamic coupling between a number of chemical processes and transport processes. Creating a model encompassing all the processes occurring at an AMD affected area increases the complexity of the model multifold times. Different approaches toward modeling highly contaminated systems such as AMD sites have been employed over the past few decades. Two distinct styles of coupled reactive transport modeling have developed over time to model the contaminated systems such as AMD affected streams.

This research evaluates the use of parsimonious coupled models of both types - kinetic and equilibrium to predict the fate and transport of four major ions - iron, aluminum, zinc and sulfate in the Effluent Creek at the Davis Mine Site. Model performances are accessed in terms of the ability of the model to accurately match the observed concentration in the Creek, along with the stability of the model determined by Akaike and Bayesian information criteria. In addition to the fundamental question of comparing kinetic and equilibrium model, we model processes affecting the fate and transport and model complexity.

The simple kinetic models-precipitation, sorption and precipitation-sorption; outperform the equilibrium models for the three cations - iron, aluminum and zinc. For sulfate, both the kinetic and equilibrium models give comparable predictions. The simple kinetic model is however unable to define exact processes that causes the chemical transformations. The equilibrium sorption model predicts the expected chemical reactions at the given pH conditions. The chemical rates in the hyporheic zone are a couple orders of magnitude higher than the stream, except for the anion, sulfate, which shows comparable reactivity in the hyporheic zone and the stream.

DOI

https://doi.org/10.7275/5675024

Share

COinS