Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Date of Award


Access Type

Campus Access

Document type


Degree Name

Doctor of Philosophy (PhD)

Degree Program


First Advisor

Vincent M. Rotello

Second Advisor

Michael J. Knapp

Third Advisor

Michael D. Barnes

Subject Categories

Organic Chemistry


Directed assembly provides a method to generate nanoscale materials with intrinsic electronic, optical, and magnetic properties. The approach combines self-assembly (bottom-up approaches) with current top down techniques to create nanoscale materials. Noncovalent interactions, such as hydrogen bonding, electrostatics, and π-stacking, can be used spatially to guide molecules into supramolecular or nanoscale complexes.

This thesis demonstrates new nanofabrication methods, starting with relatively simple interactions, such as host-guest chemistry, and proceeding to more complex nanoscale materials. Chapter 1 provides a general overview of the motivation behind nanofabrication techniques. Chapter 2 provides a fundamental understanding of noncovalent interactions and their use within bottom-up approaches. Chapter 3 cites specific host-guest chemistry of an azobenzene flavin moiety that tunes the optical properties of the push-pull system. Chapter 4 provides a method to assemble organic nanowires through cooperative dipolar and hydrogen bonding interactions. And finally, Chapter 5 facilitates the combination of bottom-up and top down approaches by introducing nanoimprinted polymer patterns as self-assembly templates.