Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Date of Award


Access Type

Campus Access

Document type


Degree Name

Doctor of Philosophy (PhD)

Degree Program

Polymer Science and Engineering

First Advisor

Gregory N. Tew

Second Advisor

David A. Hoagland

Third Advisor

Dhandapani Venkataraman

Subject Categories

Materials Science and Engineering | Polymer Chemistry


Polymeric betaines gain considerable attention for their interesting solution properties, but even more so, for their favorable bio- and haemocompatible properties. When incorporated into materials or used as surface coatings, some of these zwitterionic polymers strongly resist protein absorption due to their hygroscopic nature, making betaines promising candidates for medical diagnostics, drug delivery, and tissue engineering applications. This dissertation introduces novel norbornene-based polybetaines as foundational materials for biological applications, including non-fouling coatings and antimicrobial macromolecules. Sulfo- and carboxybetaines, composed of backbones that do not contain hydrolyzable units under physiological conditions, as well as new polymers that carry a dual functionality at the repeat unit level, coupling a zwitterionic functionality with an alkyl moiety varied to adjust the amphiphilicity of the overall system, are introduced. How structural changes, backbone chemistry, hydrophilicity/amphiphilicity, and coating surface roughness impact their non-fouling properties is investigated.