Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Date of Award

2-2012

Document Type

Campus Access

Degree Name

Doctor of Philosophy (PhD)

Degree Program

Chemistry

First Advisor

Sankaran Thayumanavan

Second Advisor

Dhandapani Venkataraman

Third Advisor

Michael J. Knapp

Subject Categories

Biochemistry | Polymer Chemistry

Abstract

Polymer-based amphiphilic systems that self-assemble into micelles are widely studied, promising molecular designs for the delivery of hydrophobic drug molecules, which are otherwise difficult to deliver due to their poor water solubility. Incorporating stimuli-sensitive character into these polymeric assemblies has elevated the usefulness of these molecular systems in drug delivery applications due to their ability to unload non-covalently encapsulated guest molecules in response to specific stimuli. Among these nano-sized polymeric micelles, dendrimer-based micellar assemblies have received particular attention due to the fact that dendrimers are well-defined-monodispersed molecular architectures. The monodisperse nature of dendrimers provides a unique advantage in studying the structure-property relationship of amphiphilic supramolecular assemblies and stimuli-sensitive disassemblies.

In this dissertation, we incorporate stimuli-sensitive characteristics into facially amphiphilic dendrimers designed and synthesized by our group. Our design principle renders these dendrimers responsive to different stimuli such as proteins, redox potential and light. We first study the self-assembly and encapsulation properties of these stimuli-responsive dendrimers in aqueous media. Next, it is demonstrated that these dendritic micellar assemblies disassemble in response to ( i ) an external stimulus such as light, ( ii ) protein-ligand interactions, and (iii ) a combination of an enzymatic reaction and redox potential. In the third molecular design, we show that combination of two stimuli enhances the release kinetics of guest molecules as compared to the independent effect of each stimulus.

We also demonstrate that disassembly of these dendritic supramolecular assemblies takes place with a concomitant release of hydrophobic guest molecules trapped within the assembly.

Share

COinS