Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Date of Award


Access Type

Campus Access

Document type


Degree Name

Doctor of Philosophy (PhD)

Degree Program

Polymer Science and Engineering

First Advisor

Shaw Ling Hsu

Second Advisor

E.Bryan Coughlin

Third Advisor

Ryan Hayward

Subject Categories

Materials Chemistry | Other Chemistry | Polymer Chemistry


For the first time, a physical method based on polymer crystallization is employed, to overcome the inherent brittleness of poly (L-lactic acid) (PLLA) by kinetically trapping a low Tg continuous amorphous phase. The decrease in mobility as a result of polymer crystallization is used to arrest the remaining polymer in the amorphous phase. This is achieved by melt blending and co-crystallizing a triblock copolymer with a configuration of the form PDLA-soft block-PDLA with PLLA. When crystallized from a temperature Tb, such that TmPLLA < Tb < Tm stereocomplex, the slow quiescent crystallization of PLLA and the preferential crystallization of the PLA stereocomplex results in formation of a morphology that can be described as stereocomplex crystals dispersed in a soft continuous amorphous phase containing the amorphous PLLA and the non-crystallized triblock copolymer. A systematic investigation of the effect of various parameters on the stereocomplex crystallization, morphology and properties of the PDLA-softblock-PDLA triblock copolymer/ PLLA blends is performed. These parameters include the chemical nature of the midblock, the triblock composition and the triblock architecture. The effect of addition of a molecular plasticizer as a third component to the blend to modify the properties of the amorphous phase is also investigated. Finally, varying functionality epoxy oligomers are investigated as additives to improve the hydrolytic stability and durability of the poly(lactic acid) based blends developed. Based on these studies, poly(lactic acid) based flexible, rubbery, semicrystalline materials containing a physically cross-linked network with the stereocomplex crystals acting as physical cross-links and the amorphous PLLA, triblock and plasticizer acting as mobile amorphous chains between the cross-links has been developed.