Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Author ORCID Identifier



Open Access Dissertation

Document Type


Degree Name

Doctor of Philosophy (PhD)

Degree Program


Year Degree Awarded


Month Degree Awarded


First Advisor

Ricardo B. Metz

Subject Categories

Physical Chemistry


Non-covalent interactions between metal ions and ligands such as water and methane have been extensively studied due to their biological and industrial importance. Gas phase studies can reveal the fundamental nature of these metal-ligand interactions. Photofragment spectroscopy is a powerful technique to investigate bond strengths, dissociation dynamics, molecular geometry and clustering and can be applied to electronic and vibrational spectroscopy. Using a home built apparatus, which combines ion production via laser ablation, separation via time-of-flight (TOF) mass spectrometry, laser excitation, and TOF fragment mass analysis, we have obtained electronic spectra of Co+(H2O) and vibrational spectra of M+(CH4)n (M=Co, Ni, Cu, Ag; n=1-4 or 1-6). The experimental techniques, apparatus, data acquisition and analysis employed throughout this thesis are described and explained in chapters 1 and 2. Chapter 3 discusses the electronic spectra of Co+(H2O), Co+(HOD) and Co+(D2O), measured from 13500 cm-1 to 18400 cm-1 using photodissociation spectroscopy. Transitions to four excited electronic states, with vibrational and partially resolved rotational structure are observed. The Co+-(H2O) binding energy is determined from the dissociation onset. The experiments and supporting calculations provide detailed information such as the electronic configuration of excited electronic states, how the Co+ electronic state affects the Co+-H2O bond strength, and how binding to Co+ changes the geometry of water. Chapter 4 discusses measurement and analysis of vibrational spectra of M+(CH4)m(Ar)3-m and M+(CH4)n (M=Co, Ni; m=1,2; n=3,4) in the C-H stretching region (2500-3100 cm-1). Interaction with the metal leads to large red shifts in the C-H stretches for proximate hydrogens. The extent of this shift is sensitive to the methane coordination (h2 vs. h3) and to the metal-methane distance. The structures of the complexes are determined by comparing measured spectra with those calculated for candidate structures. All complexes show h2 methane coordination and the d orbital occupancy determines which structures are preferred. Chapter 5 extends these studies to M+(CH4)n (M=Cu, Ag; n=1-6). Clusters have h2 methane coordination and prefer symmetrical structures due to the d10 spherical electronic configuration of M+. Clusters with n>4 also show features from second shell ligands. Chapter 6 discusses extending this work to metal cluster ion -methane interactions.