Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.
Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.
Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.
Author ORCID Identifier
N/A
AccessType
Campus-Only Access for Five (5) Years
Document Type
dissertation
Degree Name
Doctor of Philosophy (PhD)
Degree Program
Electrical and Computer Engineering
Year Degree Awarded
2018
Month Degree Awarded
February
First Advisor
Qiangfei Xia
Subject Categories
Electrical and Electronics | Electronic Devices and Semiconductor Manufacturing | Nanoscience and Nanotechnology | Nanotechnology Fabrication
Abstract
Memristive devices have attracted tremendous interests because of their highly desirable properties such as a simple structure, low switching voltage, fast switching speed, excellent scalability, multiple conductance states and great compatibility with the Complementary Metal–Oxide–Semiconductor technology. Hence, they stand out as promising candidates for next-generation non-volatile memory and electronic synapses in artificial neural network. This thesis reports systematic studies of the memristive switching phenomena in oxide based material systems, in aspects of materials engineering, switching mechanism and novel applications. We demonstrated efficient ways of engineering device performances such as metal doping and further presented a highly reliable hafnium oxide based memristor with tantalum conduction channel(s). Finally, we built an electronic emulator of conditioning and extinction with two series connected ionic and electronic memristors and implemented a novel true random number generator based on stochastic diffusive memristors, paving the way for the adoption of memristors for artificial intelligence and hardware security.
DOI
https://doi.org/10.7275/11239476.0
Recommended Citation
Jiang, Hao, "Materials Engineering, Switching Mechanism and Novel Applications of Memristive Devices" (2018). Doctoral Dissertations. 1175.
https://doi.org/10.7275/11239476.0
https://scholarworks.umass.edu/dissertations_2/1175
Included in
Electrical and Electronics Commons, Electronic Devices and Semiconductor Manufacturing Commons, Nanoscience and Nanotechnology Commons, Nanotechnology Fabrication Commons