Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.
Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.
Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.
Author ORCID Identifier
N/A
AccessType
Open Access Dissertation
Document Type
dissertation
Degree Name
Doctor of Philosophy (PhD)
Degree Program
Chemistry
Year Degree Awarded
2018
Month Degree Awarded
May
First Advisor
Igor Kaltashov
Second Advisor
Richard Vachet
Third Advisor
Anne Mason
Fourth Advisor
Daniel Hebert
Subject Categories
Analytical Chemistry
Abstract
Biotherapeutics consist of biopolymers (proteins, polysaccharides, DNA, and RNA) that are used to treat a wide range of conditions from cancer to autoimmune disease to enzyme replacement. In recent years biotherapeutics have experience tremendous growth due to advances in technology and our understanding of human biology. They are very important to modern medicine due to their ability to treat diseases which are unable to be treated with small molecule-based drugs. Unlike small molecule drugs which are synthetically produced, biotherapeutics are expressed inside cells. Produced biotherapeutics are not made up of a single homogenous population but instead a population of highly similar variants. The source of these variations are enzymatic and non-enzymatic post-translational modifications. By characterizing these modification, a profile is built that links the in vivo response of a drug to its modifications. The complexity and size of these biopolymers makes their characterization very challenging and demands the development of robust analytical techniques.
Mass spectrometry- and liquid chromatography-base methods are an integral part of protein characterization. Mass spectrometry provides accurate mass measurements that are invaluable for confirming the identity of a protein and any modifications. Additionally, mass spectrometry is used to assess a protein’s higher order structure. Liquid chromatography is a very powerful tool that allows for different post-translational modified populations of a biotherapeutic sample to separate by their chemical or physical properties. Separated populations can further be characterized to identify and analyze their chemical or structural composition. The presented work utilized a blend of mass spectrometry and liquid chromatography methods to characterize proteins with biotherapeutic potential.
DOI
https://doi.org/10.7275/11400795.0
Recommended Citation
Pawlowski, Jake, "Novel Mass Spectrometry Methods for the Analysis of Covalent and Non-Covalent Protein Structures and Their Influence on the Functions of Therapeutic Proteins" (2018). Doctoral Dissertations. 1265.
https://doi.org/10.7275/11400795.0
https://scholarworks.umass.edu/dissertations_2/1265