Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Document Type

Open Access Dissertation

Degree Name

Doctor of Philosophy (PhD)

Degree Program

Chemical Engineering

Year Degree Awarded

2019

Month Degree Awarded

February

First Advisor

Wei Fan

Second Advisor

William Curtis Conner Jr.

Third Advisor

Paul J. Dauenhauer

Fourth Advisor

Kevin Kittilstved

Subject Categories

Catalysis and Reaction Engineering | Chemical Engineering | Other Materials Science and Engineering | Transport Phenomena

Abstract

Hierarchical zeolites with micropore lengths on the order of nanometers have been synthesized with the aim of reducing mass transfer limitation. However, due to large external surface to volume ratios, the mass transport in these materials can be hindered by a secondary rate limitation step imposed on the external surface of the zeolites. This has led to the general phenomenon referred to as “surface barriers”, which cause the enhancement in mass transport being far lower than expected. In order to fully unlock the potential of hierarchical zeolites, it is imperative to fundamentally understand the molecular transport in these new types of materials.

This dissertation presents studies of molecular transport in hierarchical zeolites and the investigations on the mechanisms of surface barrier. From Frequency Response study, an asymmetric surface barrier was observed between adsorption and desorption, suggesting a possible surface pore blockage mechanism that causes the surface barrier. By studying the adsorptions and diffusions of four different probing molecules on silicalite-1 zeolites with different crystal sizes, it was observed that the onset of surface barrier in small zeolites is also related to the strong sorbate-sorbent interaction at the external surface. Micropore re-entry caused by surface diffusion extend the characteristic micropore diffusion length, leading to the slower than expected overall mass transport in these materials. In order to minimize the occurrence of micropore re-entry, a new composite material consisting 80 nm silicalite-1 and 35 nm non-porous silica nanoparticle was developed. The absence of micropore opening on the external surface of silica nanoparticle significantly reduce the chance for diffusion molecule to re-enter the micropore, leading to a much faster mass transport as compared to pure 80 nm silicalite-1.

Available for download on Thursday, August 01, 2019

Share

COinS