Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.
Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.
Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.
Author ORCID Identifier
N/A
AccessType
Open Access Dissertation
Document Type
dissertation
Degree Name
Doctor of Philosophy (PhD)
Degree Program
Polymer Science and Engineering
Year Degree Awarded
2019
Month Degree Awarded
February
First Advisor
James J. Watkins
Second Advisor
Kenneth R. Carter
Subject Categories
Biomedical Devices and Instrumentation
Abstract
Recently, biosensor devices, especially wearable devices for monitoring human health, have attracted significant interests and meanwhile, they have a huge market. These wearable biosensor devices usually consist of several key components, including microfluidics, biosensing elements and power supply. Though advanced sensing platforms have been extensively explored, high manufacturing fee and lack of practical functions are the main reasons that most of devices and techniques are still out of reach for potential users.
This dissertation focuses on fabricating these key components for biosensor devices via advanced printing/patterning techniques, such as inkjet-printing and nanoimprinting. These fabrication techniques can be potentially extended to roll-to-roll manufacturing system, allowing for low fabrication costs. Using UV-assisted nanoimprint lithography, flexible microfluidic devices were fabricated with thiol-ene click photopolymer on polymeric substrate. As for sensing elements, inkjet-printed electrodes were applied for electrochemical detections of multiple analytes. Here, inkjet-printed Au electrodes were applied for measuring salmonella concentration with magnetic beads. Glucose and cortisol sensing were developed with inkjet-printed graphene electrodes. These two sensors were compatible with “smart band-aid” platform for wearable monitoring. With synthetic skin, the real-time monitoring of glucose concentration was achieved, and the effect of flow rate was examined in detail.
Inkjet-printed electrodes can be easily customized for various applications, though their resolutions are mostly limited to ~20 microns. It is hard to develop materials within nanoscale resolution via inkjet-printing. To develop nanostructured materials, nanoimprint lithography is introduced as a direct patterning method. Several kinds of metal oxide multilayer woodpile nanostructured electrodes were developed. The aspect ratio of the final structure can be easily customized by the number of layers. Furthermore, we examined the performance of these woodpile electrodes in electrochemical applications. For example, CeO2 woodpile electrodes were used for enzymatic glucose sensors, while TiO2 woodpile electrodes were applied as lithium-ion electrodes. The structure-processing combination can lead to efficient use of these electroactive materials.
Finally, we utilized solvent-assisted nanoimprint lithography to process cellulose nanomaterials into nanostructure. Cellulose, as a major component of plant, is the most abundant biomaterial in nature. The development of patterned cellulose films can be potentially used as novel, green substrates in many applications, including wearable biosensing devices.
DOI
https://doi.org/10.7275/13179359
Recommended Citation
Zhou, Yiliang, "Direct Printing/Patterning of Key Components for Biosensor Devices" (2019). Doctoral Dissertations. 1538.
https://doi.org/10.7275/13179359
https://scholarworks.umass.edu/dissertations_2/1538