Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Author ORCID Identifier


Campus-Only Access for Five (5) Years

Document Type


Degree Name

Doctor of Philosophy (PhD)

Degree Program


Year Degree Awarded


Month Degree Awarded


First Advisor

Min Chen

Subject Categories

Analytical Chemistry | Biophysics | Biotechnology


Membrane proteins take up about one-third of all human proteins, and they are targets for more than half of all drugs. This thesis will describe how these membrane proteins and peptides can be adapted into miniaturized devices for fundamental research as well as biotechnological applications. The Escherichia coli Cytolysin A (ClyA) is deployed as a label-free nanopore tweezer with a high temporal resolution to resolve protein dynamics at the single-molecule level in real-time. My work identified the anomeric binding modes of maltose-binding protein (MBP) for the first time, derived the kinetics and thermodynamics of the protein-substrate interactions, and shed light on the mechanism of substrate recognition by MBP. I also adapted and improved the traditional droplet-interface bilayer (DIB) techniques for quantitating cell-penetrating peptides (CPPs) assisted macromolecular trafficking. In this work, we discovered the driving force for CPP-assisted translocation and validated a DIB-based approach for high throughput screening of the efficacy of CPPs.


Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.