Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.
Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.
Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.
Title
A FUNDAMENTAL STUDY OF CO-ENGINEERING PROTEIN- NANOPARTICLE FOR INTRACELLULAR PROTEIN DELIVERY
Author ORCID Identifier
https://orcid.org/0000-0002-1502-4289
AccessType
Campus-Only Access for Five (5) Years
Document Type
dissertation
Degree Name
Doctor of Philosophy (PhD)
Degree Program
Chemistry
Year Degree Awarded
2021
Month Degree Awarded
May
First Advisor
Vincent M. Rotello
Second Advisor
Michael J. Knapp
Third Advisor
Richard W. Vachet
Fourth Advisor
M. Sloan Siegrist
Subject Categories
Biotechnology | Medicinal-Pharmaceutical Chemistry | Nanomedicine | Organic Chemistry | Polymer Chemistry
Abstract
Direct cytosolic delivery of therapeutic proteins such as the CRISPR/Cas9 protein provides enormous opportunity in curing human diseases. The foremost approach to achieving this is through engineered nanomaterials. Intrinsic nanoscopic properties provide access to unique chemical and physical properties. In addition, the structural and functional diversity of gold and polymeric nanocarriers provide unrivaled control of nanostructural properties for effective transport of therapeutic cargos, overcoming barriers on the cellular and organismal level. In this thesis, I describe the application of several new nanomaterials for functional protein intracellular delivery. Initially, I generated a gold nanoparticle-based nanocomposite delivery system for delivery of engineered CRISPR-Cas9 ribonucleoprotein. Specifically, this system was used to alter macrophage DNA and knock out SIRP-α in macrophages to increase phagocytosis of cancer cells. After demonstrating effective CRISPR-Cas9 RNP delivery in vitro, I utilized the nanoassemblies to deliver CRISPR-Cas9 RNP into macrophages in vivo through systemic administration. Additionally, in a related system I generated a library of poly(oxanorbornene)imide (PONI) polymers consisting of a ‘semi-arthritic’ backbone necessary for delivery of engineered proteins. These polymers self-assemble with E-tagged proteins to form discrete polymer-protein nanocomposites (PPNCs) that are stable and capable of delivering functional proteins under physiologically relevant conditions. Finally, inspired by bioconjugate chemistry I employed the versatile and non-disruptive biotin-Streptavidin interaction as an approach to engineer the glutamic acids tags for intracellular delivery through non-covalent tethering of components into a single effective delivery vector. In summary, this thesis provides a fundamental understanding and evidence of the utility of next generation chemical and nanomaterial tools in intracellular protein-based therapeutics development.
DOI
https://doi.org/10.7275/21251696.0
Recommended Citation
Lee, Yi-Wei, "A FUNDAMENTAL STUDY OF CO-ENGINEERING PROTEIN- NANOPARTICLE FOR INTRACELLULAR PROTEIN DELIVERY" (2021). Doctoral Dissertations. 2192.
https://doi.org/10.7275/21251696.0
https://scholarworks.umass.edu/dissertations_2/2192
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.