Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Author ORCID Identifier

https://orcid.org/my-orcid?orcid=0000-0002-7640-9596

AccessType

Open Access Dissertation

Document Type

dissertation

Degree Name

Doctor of Philosophy (PhD)

Degree Program

Electrical and Computer Engineering

Year Degree Awarded

2022

Month Degree Awarded

February

First Advisor

Joseph Bardin

Subject Categories

Electrical and Electronics

Abstract

This dissertation is focused on an investigation of BiCMOS cryogenic low noise amplifiers (LNAs) based on Silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) for simultaneous low noise and low power design and also taking advantage of CMOS circuitry for adding flexibility to the LNA design. Cryogenic LNAs' scalability challenges are discussed and addressed in the dissertation. To achieve that, first, HBTs of three state-of-the-art technologies are characterized and modeled at cryogenic temperature. It is shown that SiGe HBT provides a promising compromise of noise temperature, power consumption, and bandwidth. Moreover, a scalable on-chip approach is proposed and verified for biasing of SiGe HBTs based LNAs. Finally, the first cryogenic re-configurable LNA is designed, implemented, and measured.

DOI

https://doi.org/10.7275/27245161

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS