Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

AccessType

Open Access Dissertation

Document Type

dissertation

Degree Name

Doctor of Philosophy (PhD)

Degree Program

Computer Science

Year Degree Awarded

2022

Month Degree Awarded

February

First Advisor

Arya Mazumdar

Subject Categories

Computer Engineering

Abstract

In modern day machine learning applications such as self-driving cars, recommender systems, robotics, genetics etc., the size of the training data has grown to the point that it has become essential to design distributed learning algorithms. A general framework for the distributed learning is \emph{data parallelism} where the data is distributed among the \emph{worker machines} for parallel processing and computation to speed up learning. With billions of devices such as cellphones, computers etc., the data is inherently distributed and stored locally in the users' devices. Learning in this set up is popularly known as \emph{Federated Learning}. The speed-up due to distributed framework gets hindered by some fundamental problems such as straggler workers, communication bottleneck due to high communication overhead between workers and central server, adversarial failure popularly know as \emph{Byzantine failure}. In this thesis, we study and develop distributed algorithms that are error resilient and communication efficient.

First, we address the problem of straggler workers where the learning is delayed due to slow workers in the distributed setup. To mitigate the effect of the stragglers, we employ \textbf{LDPC} (low density parity check) code to encode the data and implement gradient descent algorithm in the distributed setup. Second, we present a family of vector quantization schemes \emph{vqSGD} (vector quantized Stochastic Gradient Descent ) that provides an asymptotic reduction in the communication cost with convergence guarantees in the first order distributed optimization. We also showed that \emph{vqSGD} provides strong privacy guarantee. Third, we address the problem of Byzantine failure together with communication-efficiency in the first order gradient descent algorithm. We consider a generic class of $\delta $- approximate compressor for communication efficiency and employ a simple \emph{norm based thresholding} scheme to make the learning algorithm robust to Byzantine failures. We establish statistical error rate for non-convex smooth loss. Moreover, we analyze the compressed gradient descent algorithm with error feedback in a distributed setting and in the presence of Byzantine worker machines. Fourth, we employ the generic class of $\delta $- approximate compressor to develop a communication efficient second order Newton-type algorithm and provide rate of convergence for smooth objective. Fifth, we propose \textbf{COMRADE} (COMmunication-efficient and Robust Approximate Distributed nEwton ), an iterative second order algorithm that is communication efficient as well as robust against Byzantine failures. Sixth, we propose a distributed \emph{cubic-regularized Newton } algorithm that can escape saddle points effectively for non-convex loss function and find a local minima . Furthermore, the proposed algorithm can resist the attack of the Byzantine machines, which may create \emph{fake local minima} near the saddle points of the loss function, also known as saddle-point attack.

DOI

https://doi.org/10.7275/26438407

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS