Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Author ORCID Identifier



Open Access Dissertation

Document Type


Degree Name

Doctor of Philosophy (PhD)

Degree Program

Computer Science

Year Degree Awarded


Month Degree Awarded


First Advisor

Jim Kurose

Subject Categories

OS and Networks


The temporal and spatial variation in wireless channel conditions, node mobility make it challenging to design protocols for wireless networks. In this thesis, we design efficient routing and scheduling algorithms which adapt to changing network conditions caused by varying link quality or node mobility to improve user-level performance. We design and analyze routing protocols for static, mobile and heterogeneous wireless networks. We analyze the performance of opportunistic and cooperative forwarding in static mesh networks showing that opportunism outperforms cooperation; we identify interference as the main cause for mitigating the potential gains achievable with cooperative forwarding. For mobile networks, we quantitatively analyze the tradeoff between state information collection (sampling frequency and number of bits per sample) and power consumption for a fixed source-to-destination goodput constraint. For heterogeneous networks comprising of both static and mobile nodes, we propose a greedy algorithm (adaptive-flood) which dynamically classifies individual nodes as routers/flooders depending on network conditions and demonstrate that it achieves performance equivalent to, and in some cases significantly better than, that of network-wide routing or flooding alone. Last, we consider an application-level wireless streaming scenario where multiple clients are streaming different videos from a cellular base station. We design a greedy algorithm for efficiently scheduling multiple video streams from a base station to mobile clients so as to minimize the total number of application-playout stalls. We develop models for coarse timescale wireless channel variation to aid network and application-layer protocol design.