Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.
Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.
Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.
Author ORCID Identifier
https://orcid.org/0009-0008-5122-473X
AccessType
Open Access Dissertation
Document Type
dissertation
Degree Name
Doctor of Philosophy (PhD)
Degree Program
Electrical and Computer Engineering
Year Degree Awarded
2023
Month Degree Awarded
May
First Advisor
Tilman Wolf
Second Advisor
Michael Zink
Third Advisor
Beatriz Lorenzo
Fourth Advisor
Anna Nagurney
Subject Categories
Digital Communications and Networking | Economics
Abstract
Economic transactions typically involve only the parties directly involved, known as single-hop economic exchange. However, this model has limitations since only the final contributors participate in the resource exchange and acquire ownership of resources from previous contributors. In contrast, distributed systems aggregate resources from multiple entities across multiple hops. In Web 3.0, everyone can be a content creator and take ownership of their creations. To address this issue, we propose a value tree model that includes all contributors and enables multi-hop and asynchronous resource exchange.
We propose two different approaches to implement the value tree model: value tree single contract, where all functions are implemented in a single smart contract, and value tree recursive contracts, where recursive smart contracts are set up in the value tree. We have implemented a proof-of-concept experimental system using Ethereum and evaluated its gas cost performance. We also discuss the potential applications of the value tree model in various contexts.
Additionally, we propose three approaches for enabling data processing within a content-centric networking context. In Named Data Networking, we demonstrate that network functions can be effectively implemented and invoked by end systems or intermediate nodes to transparently enforce network policies. We also discuss the implementation considerations and various test scenarios that have been evaluated using the ndnSIM simulator.
In response to the shift towards content-centric networking in Web 3.0, we propose the Value Tree Named Data Networking (VNDN) framework, which enables users to pay for the content they consume directly rather than through intermediary services. The VNDN framework leverages the value tree contracts to facilitate fair and transparent payment for content while incentivizing nodes in the network to cache content, provide content, and process data. Our study also includes an analysis of the optimal payment splitting ratio among nodes and the implementation of the threshold propagation method in the smart contracts to minimize overhead. Our proposed framework represents a significant step forward in the development of innovative content monetization strategies and has the potential to transform the way we consume and pay for content on the internet.
DOI
https://doi.org/10.7275/34606447
Recommended Citation
Fang, Puming, "ENABLING NOVEL NETWORK ECONOMICS USING MULTI-HOP, ASYNCHRONOUS RESOURCE EXCHANGES" (2023). Doctoral Dissertations. 2809.
https://doi.org/10.7275/34606447
https://scholarworks.umass.edu/dissertations_2/2809
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License