Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.
Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.
Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.
Author ORCID Identifier
N/A
AccessType
Open Access Dissertation
Document Type
dissertation
Degree Name
Doctor of Philosophy (PhD)
Degree Program
Computer Science
Year Degree Awarded
2015
Month Degree Awarded
February
First Advisor
Erik Learned-Miller
Subject Categories
Artificial Intelligence and Robotics | Graphics and Human Computer Interfaces
Abstract
Finding correspondences between images underlies many computer vision problems, such as op- tical flow, tracking, stereovision and alignment. Finding these correspondences involves formulating a matching function and optimizing it. This optimization process is often gradient descent, which avoids exhaustive search, but relies on the assumption of being in the basin of attraction of the right local minimum. This is often the case when the displacement is small, and current methods obtain very accurate results for small motions.
However, when the motion is large and the matching function is abrupt this assumption is less likely to be true. One traditional way of avoiding this abruptness is to smooth the matching function spatially by blurring the images. As the displacement becomes larger, the amount of blur required to smooth the matching function becomes also larger. This averaging of pixels leads to a loss of detail in the image. Therefore, there is a trade-off between the size of the objects that can be tracked and the displacement that can be captured.
In this thesis we address the basic problem of increasing the size of the basin of attraction in a matching function. We use an image descriptor called distribution fields (DFs). By blurring the images in DF space instead of in pixel space, we increase the size of the basin attraction with respect to traditional methods. We show competitive results using DFs both in object tracking and optical flow. Finally we demonstrate an application of capturing large motions for temporal video stitching.
DOI
https://doi.org/10.7275/6465034.0
Recommended Citation
Sevilla-Lara, Laura, "Long Range Motion Estimation and Applications" (2015). Doctoral Dissertations. 323.
https://doi.org/10.7275/6465034.0
https://scholarworks.umass.edu/dissertations_2/323
Included in
Artificial Intelligence and Robotics Commons, Graphics and Human Computer Interfaces Commons