Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Author ORCID Identifier



Open Access Dissertation

Document Type


Degree Name

Doctor of Philosophy (PhD)

Degree Program

Electrical and Computer Engineering

Year Degree Awarded


Month Degree Awarded


First Advisor

Russell Tessier

Second Advisor

Wayne Burleson

Third Advisor

Csaba Andras Moritz

Fourth Advisor

Farshid Hajir

Subject Categories

Computer and Systems Architecture | Hardware Systems


The high power density of a many-core processor results in increased temperature which negatively impacts system reliability and performance. Dynamic thermal management applies thermal-aware techniques at run time to avoid overheating using temperature information collected from on-chip thermal sensors. Temperature sensing and thermal control schemes are two critical technologies for successfully maintaining thermal safety. In this dissertation, on-line thermal sensor calibration schemes are developed to provide accurate temperature information. Software-based dynamic thermal management techniques are proposed using calibrated thermal sensors. Due to process variation and silicon aging, on-chip thermal sensors require periodic calibration before use in DTM. However, the calibration cost for thermal sensors can be prohibitively high as the number of on-chip sensors increases. Linear models which are suitable for on-line calculation are employed to estimate temperatures at multiple sensor locations using performance counters. The estimated temperature and the actual sensor thermal profile show a very high similarity with correlation coefficient ~0.9 for SPLASH2 and SPEC2000 benchmarks. A calibration approach is proposed to combine potentially inaccurate temperature values obtained from two sources: thermal sensor readings and temperature estimations. A data fusion strategy based on Bayesian inference, which combines information from these two sources, is demonstrated. The result shows the strategy can effectively recalibrate sensor readings in response to inaccuracies caused by process variation and environmental noise. The average absolute error of the corrected sensor temperature readings is A dynamic task allocation strategy is proposed to address localized overheating in many-core systems. Our approach employs reinforcement learning, a dynamic machine learning algorithm that performs task allocation based on current temperatures and a prediction regarding which assignment will minimize the peak temperature. Our results show that the proposed technique is fast (scheduling performed in <1 >ms) and can efficiently reduce peak temperature by up to 8 degree C in a 49-core processor (6% on average) versus a leading competing task allocation approach for a series of SPLASH-2 benchmarks. Reinforcement learning has also been applied to 3D integrated circuits to allocate tasks with thermal awareness.