Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Document Type

Open Access Dissertation

Degree Name

Doctor of Philosophy (PhD)

Degree Program

Physics

Year Degree Awarded

2016

Month Degree Awarded

May

First Advisor

Michael J. Ramsey-Musolf

Second Advisor

Barry Holstein

Third Advisor

Lorenzo Sorbo

Fourth Advisor

Hongkun Zhang

Subject Categories

Elementary Particles and Fields and String Theory | Nuclear | Quantum Physics

Abstract

Low energy precision tests of fundamental symmetries provide excellent probes for the Beyond Standard Model Physics. Theoretical interpretations of these experiments often involve the application of non-perturbative Quantum Chromodynamics in the study of hadronic matrix elements that may either serve as signals of new physics or Standard Model backgrounds. In this work I present a series of studies on different hadronic matrix elements using various low-energy effective approaches to Quantum Chromodynamics, and discuss the impact of these studies on our knowledge of Standard Model and Beyond Standard Model physics.

Share

COinS