Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Document Type

Open Access Dissertation

Degree Name

Doctor of Philosophy (PhD)

Degree Program

Computer Science

Year Degree Awarded

2016

Month Degree Awarded

September

First Advisor

Prashant Shenoy

Second Advisor

David Irwin

Third Advisor

Don Towsley

Fourth Advisor

Tilman Wolf

Subject Categories

Computer Sciences

Abstract

The ubiquitous nature of computing devices and their increasing reliance on remote resources have driven and shaped public cloud platforms into unprecedented large-scale, distributed data centers. Concurrently, a plethora of cloud-based applications are experiencing multi-dimensional workload dynamics---workload volumes that vary along both time and space axes and with higher frequency.

The interplay of diverse workload characteristics and distributed clouds raises several key challenges for efficiently and dynamically managing server resources. First, current cloud platforms impose certain restrictions that might hinder some resource management tasks. Second, an application-agnostic approach might not entail appropriate performance goals, therefore, requires numerous specific methods. Third, provisioning resources outside LAN boundary might incur huge delay which would impact the desired agility.

In this dissertation, I investigate the above challenges and present the design of automated systems that manage resources for various applications in distributed clouds. The intermediate goal of these automated systems is to fully exploit potential benefits such as reduced network latency offered by increasingly distributed server resources. The ultimate goal is to improve end-to-end user response time with novel resource management approaches, within a certain cost budget.

Centered around these two goals, I first investigate how to optimize the location and performance of virtual machines in distributed clouds. I use virtual desktops, mostly serving a single user, as an example use case for developing a black-box approach that ranks virtual machines based on their dynamic latency requirements. Those with high latency sensitivities have a higher priority of being placed or migrated to a cloud location closest to their users. Next, I relax the assumption of well-provisioned virtual machines and look at how to provision enough resources for applications that exhibit both temporal and spatial workload fluctuations. I propose an application-agnostic queueing model that captures the resource utilization and server response time. Building upon this model, I present a geo-elastic provisioning approach---referred as geo-elasticity---for replicable multi-tier applications that can spin up an appropriate amount of server resources in any cloud locations. Last, I explore the benefits of providing geo-elasticity for database clouds, a popular platform for hosting application backends. Performing geo-elastic provisioning for backend database servers entails several challenges that are specific to database workload, and therefore requires tailored solutions. In addition, cloud platforms offer resources at various prices for different locations. Towards this end, I propose a cost-aware geo-elasticity that combines a regression-based workload model and a queueing network capacity model for database clouds.

In summary, hosting a diverse set of applications in an increasingly distributed cloud makes it interesting and necessary to develop new, efficient and dynamic resource management approaches.

Share

COinS