Publication Date

2021

Journal or Book Title

AEROSOL AND AIR QUALITY RESEARCH

Abstract

In densely developed port areas with numerous emissions sources, relating measured air quality changes to emissions is challenging given the geographic density of sources without unique pollutant composition signatures. To better understand air quality during increasing emission controls at the Port of New York and New Jersey (Port), an air monitoring station was sited to minimize collinearity of sources along ordinal directions. The study area includes an international airport, interstate highway, port terminals and shipping lanes, and industrial sources, as well as typical urban emissions of a megacity. Because air flow travel time from sources to the monitor were usually much less than one hour, minute-by-minute, high-precision data were collected for three years (2013-2015) for sulfur dioxide (SO2), carbon monoxide (CO), oxides of nitrogen (NO, NO2), black carbon (BC), fine particulate matter (PM2.5), and meteorology (wind speed, wind direction, temperature, humidity). From summer 2014 to spring 2015, hourly metals data were also collected. A high degree of temporal variability was observed for pollutants associated with direct emissions, with highest hourly average coefficient of variation observed for NO (2.65), SO2 (1.45) and BC (1.21). Nonparametric trajectory analysis (NTA) was utilized to separate the source areas influencing the monitoring data and observe how they changed over time, with over 1.6 million trajectories computed in total. Comparing the last 5 quarters of the study to the first 5 quarters, concentrations at the monitoring site associated with three port-related geographic areas decreased by 34-41%, 11-17%, and 28-41% for SO2, NOx, and BC, respectively. Over the same period, indicators of shipping and cargo activity at the port remained relatively constant; therefore, a shift in emission factors is likely the cause of the change. This study demonstrates the value of high-time resolution, accurate monitoring data along with careful siting to understand source area influences.

ISSN

1680-8584

DOI

https://doi.org/10.4209/aaqr.2020.02.0069

Volume

21

Issue

3

License

UMass Amherst Open Access Policy

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Funder

Intramural EPA [EPA999999] Funding Source: Medline

Share

COinS