Kim, Dr. Young_Cheul
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Associate Professor, Department of Nutrition, School of Public Health and Health Sciences
Last Name
Kim
First Name
Dr. Young_Cheul
Discipline
Nutrition
Expertise
Adipocyte
Bioactive
Diabetes
Metabolism
Obesity
Phytochemicals
Bioactive
Diabetes
Metabolism
Obesity
Phytochemicals
Introduction
My research interest is to understand the impact of nutrients and dietary bioactive components (i.e., phenolic phytochemicals) on chronic diseases such as obesity and diabetes by identifying the molecular factors/pathways involved in fat cell differentiation and metabolism.
Name
5 results
Search Results
Now showing 1 - 5 of 5
Publication Molecular Weight Dependent Glucose Lowering Effect of Low Molecular Weight Chitosan Oligosaccharide (GO2KA1) on Postprandial Blood Glucose Level in SD Rats Model(2013-01-01) Jo, Sung-Hoon; Ha, Kyoung-Soo; Moon, Kyoung-Sik; Kim, Jong-Gwan; Oh, Chen-Gum; Kim, Young-Cheul; Apostolidis, Emmanouil; Kwon, Young-InAbstract This research investigated the effect of enzymatically digested low molecular weight (MW) chitosan oligosaccharide on type 2 diabetes prevention. Three different chitosan oligosaccharide samples with varying MW were evaluated in vitro for inhibition of rat small intestinal α-glucosidase and porcine pancreatic α-amylase (GO2KA1; <1000 Da, GO2KA2; 1000–10,000 Da, GO2KA3; MW > 10,000 Da). The in vitro results showed that all tested samples had similar rat α-glucosidase inhibitory and porcine α-amylase inhibitory activity. Based on these observations, we decided to further investigate the effect of all three samples at a dose of 0.1 g/kg, on reducing postprandial blood glucose levels in Sprague-Dawley (SD) rat model after sucrose loading test. In the animal trial, all tested samples had postprandial blood glucose reduction effect, when compared to control, however GO2KA1 supplementation had the strongest effect. The glucose peak (Cmax) for GO2KA1 and control was 152 mg/dL and 193 mg/dL, respectively. The area under the blood glucose-time curve (AUC) for GO2KA1 and control was 262 h mg/dL and 305 h mg/dL, respectively. Furthermore, the time of peak plasma concentration of blood glucose (Tmax) for GO2KA1 was significantly delayed (0.9 h) compared to control (0.5 h). These results suggest that GO2KA1 could have a beneficial effect for blood glucose management relevant to diabetes prevention in normal and pre-diabetic individuals. The suggested mechanism of action is via inhibition of the carbohydrate hydrolysis enzyme α-glucosidase and since GO2KA1 (MW < 1000 Da) had higher in vivo effect, we hypothesize that it is more readily absorbed and might exert further biological effect once it is absorbed in the blood stream, relevant to blood glucose management.Publication Effect of Long-Term Dietary Arginyl-Fructose (AF) on Hyperglycemia and HbA1c in Diabetic db/db Mice(2014-01-01) Lee, Kwang-Hyoung; Ha, Kyoung-Soo; Jo, Sung-Hoon; Lee, Chong M.; Kim, Young-Cheul; Chung, Kwang-Hoe; Kwon, Young-InWe have previously reported that Amadori compounds exert anti-diabetic effects by lowering sucrose-induced hyperglycemia in normal Sprague-Dawley rats. In the present study we extended our recent findings to evaluate whether α-glucosidase inhibitor arginyl-fructose (AF) lowers blood glucose level in diabetic db/db mice, a genetic model for type 2 diabetes. The db/db mice were randomly assigned to high-carbohydrate diets (66.1% corn starch) with and without AF (4% in the diet) for 6 weeks. Changes in body weight, blood glucose level, and food intake were measured daily for 42 days. Dietary supplementation of AF resulted in a significant decrease of blood glucose level (p < 0.001) and body weight (p < 0.001). The level of HbA1c, a better indicator of plasma glucose concentration over prolonged periods of time, was also significantly decreased for 6-week period (p < 0.001). Dietary treatment of acarbose® (0.04% in diet), a positive control, also significantly alleviated the level of blood glucose, HbA1c, and body weight. These results indicate that AF Maillard reaction product improves postprandial hyperglycemia by suppressing glucose absorption as well as decreasing HbA1c level.Publication Anti-photoaging effect of fermented agricultural by-products on ultraviolet B-irradiated hairless mouse skin(2019-01-01) Choi, Sun-Il; Jung, Tae-Dong; Cho, Bong-Yeon; Choi, Seung-Hyun; Sim, Wan-Sup; Hao, Xionggao; Lee, Sang Jong; Kim, Young-Cheul; Lee, Ok-HwanProcessed products from agricultural produce generate a large number of agricultural by‑products that contain a number of functional substances. These are often discarded owing to the lack of suitable processing methods. The present study investigated the anti‑photoaging properties of fermented rice bran (FRB), soybean cake (FSB) and sesame seed cake (FSC) on ultraviolet B (UVB)‑irradiated hairless mouse skin. Results indicated that the oral administration of FRB, FSB and FSC effectively inhibited the UVB irradiation‑induced expression of matrix metalloproteinase (MMP)‑2, MMP‑9, MMP‑3 and MMP‑13. Reverse transcription‑quantitative polymerase chain reaction results also demonstrated that FRB, FSB and FSC significantly inhibited the UVB‑induced expression of the genes encoding tumor necrosis factor‑α, inducible nitric oxide synthase, interleukin (IL)‑6 and IL‑1β when compared with the UVB‑vehicle group (P<0.05). Additionally, collagen degradation and mast cell infiltration were reduced in hairless mouse skin. Furthermore, UVB‑induced wrinkle formation was also significantly reduced in mouse skin compared with the UVB‑vehicle group (P<0.05). These results reveal that fermented agricultural by‑products may serve as potential functional materials with anti‑photoaging activities.Publication Selected Tea and Tea Pomace Extracts Inhibit Intestinal α-Glucosidase Activity in Vitro and Postprandial Hyperglycemia in Vivo(2015-01-01) Oh, Jungbae; Jo, Sung-Hoon; Kim, Justin S.; Ha, Kyoung-Soo; Lee, Jung-Yun; Choi, Hwang-Yong; Yu, Seok-Yeong; Kwon, Young-In; Kim, Young-CheulType 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by postprandial hyperglycemia, which is an early defect of T2DM and thus a primary target for anti-diabetic drugs. A therapeutic approach is to inhibit intestinal α-glucosidase, the key enzyme for dietary carbohydrate digestion, resulting in delayed rate of glucose absorption. Although tea extracts have been reported to have anti-diabetic effects, the potential bioactivity of tea pomace, the main bio waste of tea beverage processing, is largely unknown. We evaluated the anti-diabetic effects of three selected tea water extracts (TWE) and tea pomace extracts (TPE) by determining the relative potency of extracts on rat intestinal α-glucosidase activity in vitro as well as hypoglycemic effects in vivo. Green, oolong, and black tea bags were extracted in hot water and the remaining tea pomace were dried and further extracted in 70% ethanol. The extracts were determined for intestinal rat α-glucosidases activity, radical scavenging activity, and total phenolic content. The postprandial glucose-lowering effects of TWE and TPE of green and black tea were assessed in male Sprague-Dawley (SD) rats and compared to acarbose, a known pharmacological α-glucosidase inhibitor. The IC50 values of all three tea extracts against mammalian α-glucosidase were lower or similar in TPE groups than those of TWE groups. TWE and TPE of green tea exhibited the highest inhibitory effects against α-glucosidase activity with the IC50 of 2.04 ± 0.31 and 1.95 ± 0.37 mg/mL respectively. Among the specific enzymes tested, the IC50 values for TWE (0.16 ± 0.01 mg/mL) and TPE (0.13 ± 0.01 mg/mL) of green tea against sucrase activity were the lowest compared to those on maltase and glucoamylase activities. In the animal study, the blood glucose level at 30 min after oral intake (0.5 g/kg body wt) of TPE and TWE of both green and black tea was significantly reduced compared to the control in sucrose-loaded SD rats. The TPE of all three teas had significantly higher phenolic content than those of the TWE groups, which correlated strongly with the DPPH radical scavenging activity. This is the first report of tea pomace extract significantly inhibits intestinal α-glucosidase, resulting in delayed glucose absorption and thereby suppressed postprandial hyperglycemia. Our data suggest that tea pomace-derived bioactives may have great potential for further development as nutraceutical products and the reuse of otherwise biowaste as valuable bioresources for the industry.Publication Anti-Obesity and Anti-Adipogenic Effects of Chitosan Oligosaccharide (GO2KA1) in SD Rats and in 3T3-L1 Preadipocytes Models(2021-01-01) Lee, Jung-Yun; Kim, Tae Yang; Kang, Hanna; Oh, Jungbae; Park, Joo Woong; Kim, Se-Chan; Kim, Minjoo; Apostolidis, Emmanouil; Kim, Dr. Young_Cheul; Kwon, Young-InExcess body weight is a major risk factor for type 2 diabetes (T2D) and associated metabolic complications, and weight loss has been shown to improve glycemic control and decrease morbidity and mortality in T2D patients. Weight-loss strategies using dietary interventions produce a significant decrease in diabetes-related metabolic disturbance. We have previously reported that the supplementation of low molecular chitosan oligosaccharide (GO2KA1) significantly inhibited blood glucose levels in both animals and humans. However, the effect of GO2KA1 on obesity still remains unclear. The aim of the study was to evaluate the anti-obesity effect of GO2KA1 on lipid accumulation and adipogenic gene expression using 3T3-L1 adipocytes in vitro and plasma lipid profiles using a Sprague-Dawley (SD) rat model. Murine 3T3-L1 preadipocytes were stimulated to differentiate under the adipogenic stimulation in the presence and absence of varying concentrations of GO2KA1. Adipocyte differentiation was confirmed by Oil Red O staining of lipids and the expression of adipogenic gene expression. Compared to control group, the cells treated with GO2KA1 significantly decreased in intracellular lipid accumulation with concomitant decreases in the expression of key transcription factors, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (CEBP/α). Consistently, the mRNA expression of downstream adipogenic target genes such as fatty acid binding protein 4 (FABP4), fatty acid synthase (FAS), were significantly lower in the GO2KA1-treated group than in the control group. In vivo, male SD rats were fed a high fat diet (HFD) for 6 weeks to induced obesity, followed by oral administration of GO2KA1 at 0.1 g/kg/body weight or vehicle control in HFD. We assessed body weight, food intake, plasma lipids, levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) for liver function, and serum level of adiponectin, a marker for obesity-mediated metabolic syndrome. Compared to control group GO2KA1 significantly suppressed body weight gain (185.8 ± 8.8 g vs. 211.6 ± 20.1 g, p < 0.05) with no significant difference in food intake. The serum total cholesterol, triglyceride, and low-density lipoprotein (LDL) levels were significantly lower in the GO2KA1-treated group than in the control group, whereas the high-density lipoprotein (HDL) level was higher in the GO2KA1 group. The GO2KA1-treated group also showed a significant reduction in ALT and AST levels compared to the control. Moreover, serum adiponectin levels were significantly 1.5-folder higher than the control group. These in vivo and in vitro findings suggest that dietary supplementation of GO2KA1 may prevent diet-induced weight gain and the anti-obesity effect is mediated in part by inhibiting adipogenesis and increasing adiponectin level.