Boyer, Katherine

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Assistant Professor Department of Kinesiology, School of Public Health and Health Sciences
Last Name
Boyer
First Name
Katherine
Discipline
Kinesiology
Expertise
Biomechanics
Motion Analysis
Osteoarthritis
Overuse Injury
Tissue Mechanics
Introduction
Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Gait mechanics contribute to exercise induced pain flares in knee osteoarthritis
    (2019-01-01) Boyer, Katherine A; Hafer, Jocelyn F.
    Background Exercise-induced pain flares represent a significant barrier for individuals with knee osteoarthritis to meet physical activity recommendations. There is a need to understand factors that contribute to pain flares and the potential for the motor system to adapt and reduce joint loading should a flare occur. The study aim was to examine the impact of a bout of exercise on self-reported pain, walking mechanics and muscle co-contraction for participants with knee osteoarthritis. Methods Thirty-six adults (17 healthy older and 19 knee osteoarthritis) participated in this study. Self-reported pain, joint mechanics and muscle co-activation during gait at two self-selected speeds were collected before and after a 20-min preferred pace treadmill walk (20MTW). Results Eight of nineteen osteoarthritis participants had a clinically significant pain flare response to the 20MTW. At baseline the participants that did not experience a pain flare had smaller knee flexion and total reaction moments compared to both the participants with pain flares (p = 0.02; p = 0.05) and controls (p < 0.001; p < 0.001). In addition, the 2nd peak knee adduction (p = 0.01) and internal rotation (p = 0.001) moments were smaller in the no flares as compared to controls. The pain flare participants differed from controls with smaller knee internal rotation moments (p = 0.03), but greater relative hamstrings (vs. quadriceps) and medial (vs. lateral) muscle activation (p = 0.04, p = 0.04) compared to both controls and no flare participants (p = 0.04, p = 0.007). Following the 20MTW there were greater decreases in the 1st and 2nd peak knee adduction (p = 0.03; p = 0.02), and internal rotation (p = 0.002) moments for the pain flare as compared to the no flare group. In addition, for the pain flare as compared to controls, greater decreases in the knee flexion (p = 0.03) and internal rotation (p = 0.005) moments were found. Conclusions Individuals who adapt their gait to reduce knee joint loads may be less susceptible to exercise-induced pain flares. This highlights a potential role of gait biomechanics in short-term osteoarthritis pain fluctuations. The results also suggest that despite the chronic nature of osteoarthritis pain, the motor system’s ability to respond to nociceptive stimuli remains intact.
  • Publication
    The Nature of Age-Related Differences in Knee Function during Walking: Implication for the Development of Knee Osteoarthritis
    (2016-01-01) Boyer, Katherine A.; Andriacchi, Thomas P.
    Background Changes in knee kinematics have been identified in the early stages of osteoarthritis (OA). However, there is a paucity of information on the nature of kinematic change that occur with aging prior to the development of OA, This study applied a robust statistical method (Principal Component Analysis) to test the hypothesis that coupling between primary (flexion) and secondary (anterior-posterior translation, internal-external rotation) joint motions in walking would differ for age groupings of healthy subjects. Methods Seventy-four healthy participants divided into three groups with mean ages of 24 ± 2.3 years (younger), 48 ± 4.7years (middle-age) and 64 ± 2.4 years (older) were examined. Principal Component Analysis was used to characterize and statistically compare the patterns of knee joint movement and their relationships in walking. Results There were significant differences between the younger group and both the middle-age and older groups in the knee frontal plane angle and the coupling between knee flexion (PC1, p≤0.04) and the relative magnitudes of secondary plane motions in early and late stance (PC3, p<0.01). Two additional principal components (PC2, p = 0.03 and PC5, p<0.01) described differences in early stance knee flexion and relationship with secondary plane motion through-out stance for the older compared with middle-age group. Conclusions It appears there are changes in knee kinematics that occur with aging. The kinematic differences were identified for middle-aged as well as older adults suggesting midlife changes in neuromuscular physiology or behavior may have important consequences. These kinematic measures offer the potential to identify early markers for the risk of developing knee OA with aging.