Loading...
COMBINING HUMAN FACTORS AND DATA SCIENCE METHODS TO EVALUATE THE USE OF FREE TEXT COMMUNICATION ORDERS IN ELECTRONIC HEALTH RECORDS
Citations
Altmetric:
Abstract
Medication errors are a leading cause of death in the United States. Electronic Health Records (EHR) along with Computerized Provider Order Entry (CPOE) are considered promising ways to reduce these errors. However, EHR systems have not eliminated medication errors. Moreover, in some cases they have facilitated errors due to issues such as poor usability and negative effects on clinical workflows. The use of unexpected free text within a CPOE system can serve as a marker that the system does not adequately support clinical workflow. Prior studies have looked at the use of free text within medication orders, but the inclusion of medication related information in communication for non-medication orders (CNMOs), a type of free text order, has not been adequately studied. This mixed-methods study identified the prevalence, nature and reasons for the inclusion of medication related information in CNMOs using a large sample of CNMOs placed at a mid-Atlantic hospital system in 2017, and via interviews with physicians. The study found that more than 42% of CNMOs contain medication related information. Moreover, the use of CNMOs varied significantly across provider types, hospital locations, patient settings and other factors. The study found 10 themes that might cause providers to adopt such workarounds, including missing functionality and poor usability. The viii study also identified several general challenges in communicating medication information in the EHR, and potential solutions to mitigate these challenges. This dissertation also demonstrates how natural language processing could be used to identify medication related CNMOs.
Type
dissertation
Date
2019-09